Previous |  Up |  Next

Article

Title: Continuous selections on spaces of continuous functions (English)
Author: Tamariz-Mascarúa, Ángel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 641-660
.
Category: math
.
Summary: For a space $Z$, we denote by $\Cal{F}(Z)$, $\Cal{K}(Z)$ and $\Cal{F}_2(Z)$ the hyperspaces of non-empty closed, compact, and subsets of cardinality $\leq 2$ of $Z$, respectively, with their Vietoris topology. For spaces $X$ and $E$, $C_p(X,E)$ is the space of continuous functions from $X$ to $E$ with its pointwise convergence topology. We analyze in this article when $\Cal{F}(Z)$, $\Cal{K}(Z)$ and $\Cal{F}_2(Z)$ have continuous selections for a space $Z$ of the form $C_p(X,E)$, where $X$ is zero-dimensional and $E$ is a strongly zero-dimensional metrizable space. We prove that $C_p(X,E)$ is weakly orderable if and only if $X$ is separable. Moreover, we obtain that the separability of $X$, the existence of a continuous selection for $\Cal{K}(C_p(X,E))$, the existence of a continuous selection for $\Cal{F}_2(C_p(X,E))$ and the weak orderability of $C_p(X,E)$ are equivalent when $X$ is $\Bbb{N}$-compact. Also, we decide in which cases $C_p(X,2)$ and $\beta C_p(X,2)$ are linearly orderable, and when $\beta C_p(X,2)$ is a dyadic space. (English)
Keyword: continuous selections
Keyword: Vietoris topology
Keyword: linearly orderable space
Keyword: weakly orderable space
Keyword: space of continuous functions
Keyword: dyadic spaces
MSC: 54B20
MSC: 54C35
MSC: 54C65
MSC: 54F05
idZBL: Zbl 1150.54021
idMR: MR2337419
.
Date available: 2009-05-05T17:00:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119625
.
Reference: [Arh1] Arhangel'skii A.V.: On mappings of everywhere dense subsets of topological product.Soviet Math. Dokl. 2 (1971), 520-524.
Reference: [Arh2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, Mathematics and its Applications, vol. 78 Dordrecht, Boston, London (1992). MR 1144519
Reference: [Č] Čoban M.: Many-valued mappings and Borel sets, I.Trans. Moscow Math. Soc. 22 (1970), 258-280. MR 0372812
Reference: [C] Contreras A.: Espacios de funciones continuas del tipo $C(X,E)$.Tesis doctoral, Facultad de Ciencias, UNAM México (2003).
Reference: [CT] Contreras-Carreto A., Tamariz-Mascarúa A.: On some generalizations of compactness in spaces $C_p(X,2)$ and $C_p(X,\Bbb Z)$.Bol. Soc. Mat. Mex. 9 (2003), 291-308. MR 2029278
Reference: [E] Engelking R.: General Topology.Heldermann Verlag Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [EE] Efimov B., Engelking R.: Remarks on dyadic spaces, II.Colloq. Math. 13 (1965), 181-197. Zbl 0137.16104, MR 0188964
Reference: [EHM] Engelking R., Heath R.W., Michael E.: Topological well-ordering and continuous selections.Invent. Math. 6 (1968), 150-158. Zbl 0167.20504, MR 0244959
Reference: [EP] Engelking R., Pelczyński A.: Remarks on dyadic spaces.Colloq. Math. 11 (1963), 55-63. MR 0161296
Reference: [GS] García-Ferreira S., Sanchis M.: Weak selections and pseudocompactness.Proc. Amer. Math. Soc. 132 (2004), 1823-1825. Zbl 1048.54012, MR 2051146
Reference: [H] Herrlich H.: Ordnungsfähigkeit total-diskontinuierlicher Räumen.Math. Ann. 159 (1965), 77-80. MR 0182944
Reference: [L] Lutzer D.J.: Ordered topological spaces.Surveys in General Topology, edited by G.M. Reed, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980, pp.247-295. Zbl 0472.54020, MR 0564104
Reference: [M] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152-182. Zbl 0043.37902, MR 0042109
Reference: [MH] Maurice M.A., Hart K.P.: Some general problems on generalized metrizability and cardinal invariant in ordered topological spaces.Topology and Order Structures, part 1, edited by H.R. Bennet and D.J. Lutzer, Mathematical Centre Tracts, 142, Mathematisch Centrum, Amsterdam, 1981, pp.51-57. MR 0630540
Reference: [vMW] van Mill J., Wattel E.: Selections and orderability.Proc. Amer. Mat. Soc. 83 3 (1981), 601-605. Zbl 0473.54010, MR 0627702
Reference: [vMPP] van Mill J., Pelant J., Pol R.: Selections that characterize topological completeness.Fund. Math. 149 (1996), 127-141. Zbl 0861.54016, MR 1376668
Reference: [VRS] Venkataraman M., Rajagopalan M., Soundararajan T.: Orderable topological spaces.General Topology Appl. 2 (1972), 1-10. Zbl 0238.54029, MR 0298631
Reference: [W] Williams S.W.: Spaces with dense orderable subspaces.Topology and Order Structures, part 1, edited by H.R. Bennet and D.J. Lutzer, Mathematical Centre Tracts, 142, Mathematisch Centrum, Amsterdam, 1981, pp.27-49. Zbl 0473.54018, MR 0630539
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_10.pdf 309.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo