Previous |  Up |  Next

Article

Title: On the Borel-Cantelli Lemma and moments (English)
Author: Amghibech, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 669-679
.
Category: math
.
Summary: We present some extensions of the Borel-Cantelli Lemma in terms of moments. Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs are based on the expansion of moments of some partial sums by using Stirling numbers. We also give a comment concerning the results of Petrov V.V., {\it A generalization of the Borel-Cantelli Lemma\/}, Statist. Probab. Lett. {\bf 67} (2004), no. 3, 233--239. (English)
Keyword: Borel-Cantelli Lemma
Keyword: Stirling numbers
MSC: 05A18
MSC: 60A10
MSC: 60F15
idZBL: Zbl 1150.60305
idMR: MR2337421
.
Date available: 2009-05-05T17:00:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119627
.
Reference: [1] Chung K.L., Erdös P.: On the application of the Borel-Cantelli Lemma.Trans. Amer. Math. Soc. 72 (1952), 1 179-186. MR 0045327
Reference: [2] Erdös P., Rényi A.: On Cantor's series with convergent $\Sigma 1/q_n$.Ann. Univ. Sci. Budapest Sect. Math. 2 (1959), 93-109. MR 0126414
Reference: [3] Kochen S.P., Stone C.J.: A note on the Borel-Cantelli Lemma.Illinois J. Math. 8 (1964), 248-251. Zbl 0139.35401, MR 0161355
Reference: [4] Lamperti J.: Wiener's test and Markov chains.J. Math. Anal. Appl. 6 (1963), 58-66. Zbl 0238.60044, MR 0143258
Reference: [5] Ortega J., Wschebor M.: On the sequence of partial maxima of some random sequences.Stochastic Process. Appl. 16 (1983), 85-98. MR 0723645
Reference: [6] Petrov V.V.: A note on the Borel-Cantelli Lemma.Statist. Probab. Lett. 58 (2002), 3 283-286. Zbl 1017.60004, MR 1921874
Reference: [7] Petrov V.V.: A generalization of the Borel-Cantelli Lemma.Statist. Probab. Lett. 67 (2004), 3 233-239. Zbl 1101.60300, MR 2053525
Reference: [8] Rényi A.: Probability Theory.North-Holland Series in Applied Mathematics and Mechanics, vol. 10, North-Holland, Amsterdam-London, 1970; German version 1962, French version 1966, new Hungarian edition 1965. MR 0315747
Reference: [9] Spitzer F.: Principles of Random Walk.2nd edition, Springer, New York-Heidelberg, 1976. Zbl 0979.60002, MR 0388547
Reference: [10] Van Lint J.H., Wilson R.M.: A Course in Combinatorics.2nd ed., Cambridge University Press, Cambridge, 2001. Zbl 0980.05001, MR 1871828
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_12.pdf 207.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo