[1] Arhangelskiĭ A.V.: 
On topological spaces which are complete in the sense of Čech. Vestnik Moskov. Univ. Ser. I Mat. Meh. (1961), 2 37-40 (Russian). 
MR 0131258[2] Blair R.L., van Douwen E.: 
Nearly realcompact spaces. Topology Appl. 47 3 (1992), 209-221. 
MR 1192310 | 
Zbl 0772.54021[3] Buhagiar D., Chetcuti E., Dvurečenskij A.: 
Measure-theoretic characterizations of certain topological properties. Bull. Pol. Acad. Sci. 53 1 (2005), 99-109. 
MR 2162757 | 
Zbl 1113.28012[4] Čech E.: 
On bicompact spaces. Ann. Math. 38 (1937), 823-844. 
MR 1503374[5] Dijkstra J.J.: Measures in topology. Master Thesis, Univ. of Amsterdam, 1977.
[8] Frolík Z.: 
Generalizations of the $G_\delta$-property of complete metric spaces. Czechoslovak Math. J. 10 (1960), 359-379. 
MR 0116305[9] Frolík Z.: 
A generalization of realcompact spaces. Czechoslovak Math. J. 13 (1963), 127-138. 
MR 0155289[10] Gardner R.J., Pfeffer W.F.: 
Borel Measures. in: Handbook of Set-Theoretic Topology, Elsevier, 1984, pp.961-1043. 
MR 0776641 | 
Zbl 0593.28016[12] Hart K.P., Nagata J., Vaughan J.E. (Eds.): 
Encyclopedia of General Topology. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 2004. 
MR 2049453 | 
Zbl 1059.54001[13] Hewitt E.: 
Linear functionals on spaces of continuous functions. Fund. Math. 37 (1950), 161-189. 
MR 0042684 | 
Zbl 0040.06401[14] Isiwata T.: 
On locally Q-complete spaces, I, II, and III. Proc. Japan Acad. 35 (1959), 232-236, 263-267, 431-434. 
MR 0107220[15] Mack J., Rayburn M., Woods G.: 
Lattices of topological extensions. Trans. Amer. Math. Soc. 189 (1972), 163-174. 
MR 0350700[16] Nagata J.: 
Modern General Topology. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1985, Second revised edition. 
Zbl 0598.54001[17] Rice M.D., Reynolds G.D.: 
Weakly Borel-complete topological spaces. Fund. Math. 105 (1980), 179-185. 
MR 0580580 | 
Zbl 0435.54033[18] Sakai M.: 
A new class of isocompact spaces and related results. Pacific J. Math. 122 1 (1986), 211-221. 
MR 0825232 | 
Zbl 0592.54025[19] Weir M.: 
Hewitt-Nachbin Spaces. North Holland Math. Studies, American Elsevier, New York, 1975. 
MR 0514909 | 
Zbl 0314.54002