Previous |  Up |  Next

Article

Title: A generalization of a generic theorem in the theory of cardinal invariants of topological spaces (English)
Author: Ramírez-Páramo, Alejandro
Author: Tapia-Bonilla, Noé Trinidad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 1
Year: 2007
Pages: 177-187
.
Category: math
.
Summary: The main goal of this paper is to establish a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related to the well-known Arhangel'skii's inequality: If $X$ is a $T_2$-space, then $|X|\leq 2^{L(X)\chi (X)}$. Moreover, we will show relative versions of three well-known cardinal inequalities. (English)
Keyword: cardinal functions
Keyword: cardinal inequalities
MSC: 54A25
idZBL: Zbl 1199.54034
idMR: MR2338838
.
Date available: 2009-05-05T17:02:05Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119647
.
Reference: [1] Alas O.T.: More topological cardinal inequalities.Colloq. Math. 65 (1993), 165-168. Zbl 0842.54002, MR 1240163
Reference: [2] Arhangel'skii A.V.: A generic theorem in the theory of cardinal invariants of topological spaces.Comment. Math. Univ. Carolin. 36 2 (1995), 305-327. MR 1357532
Reference: [3] Arhangel'skiĭ A.V.: The structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 6 (1978). MR 0526012
Reference: [4] Bella A., Cammaroto F.: On the cardinality of Urysohn spaces.Canad. Math. Bull. 31 (1988), 153-158. Zbl 0646.54005, MR 0942065
Reference: [5] Bell M., Ginsburg J., Woods G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number.Pacific J. Math. 79 1 (1978), 37-45. MR 0526665
Reference: [6] Gryzlov A.A., Stavrova D.N.: Topological spaces with a selected subset-cardinal invariants and inequalities.Comment. Math. Univ. Carolin. 35 3 (1994), 525-531. Zbl 0869.54007, MR 1307279
Reference: [7] Hajnal A., Juhász I.: Discrete subspaces of topological spaces II.Indag. Math. 31 (1969), 18-30. MR 0264585
Reference: [8] Hodel R.E.: Arhangel'skiĭ's Solution to Alexandroff's problem: A survey.Topology Appl. 153 13 (2006), 2199-2217. MR 2238725
Reference: [9] Hodel R.E.: Combinatorial set theory and cardinal functions inequalities.Proc. Amer. Math. Soc. 111 (1992), 567-575. MR 1039531
Reference: [10] Hodel R.E.: Cardinal functions I.in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.1-61. Zbl 0559.54003, MR 0776620
Reference: [11] Juhász I.: Cardinal Functions in Topology - Ten Years Later.Mathematisch Centrum, Amsterdam, 1980. MR 0576927
Reference: [12] Stavrova, D.: Separation pseudocharacter and the cardinality of topological spaces.Topology Proc. 25 (2000), 333-343. Zbl 1027.54006, MR 1925691
Reference: [13] Shu-Hao S.: Two new topological cardinal inequalities.Proc. Amer. Math. Soc. 104 (1988), 313-316. MR 0958090
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-1_14.pdf 240.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo