Previous |  Up |  Next

Article

Title: Non-existence result for quasi-linear elliptic equations with supercritical growth (English)
Author: Yang, Zuodong
Author: Yuan, Junli
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 417-430
.
Category: math
.
Summary: We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition. (English)
Keyword: quasi-linear elliptic equations
Keyword: non-existence
Keyword: large solution
Keyword: small solution
MSC: 35B25
MSC: 35J20
MSC: 35J25
MSC: 35J60
MSC: 35J62
MSC: 35J65
MSC: 35P30
idZBL: Zbl 1199.35110
idMR: MR2374124
.
Date available: 2009-05-05T17:03:51Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119669
.
Reference: [1] Astarita G., Marrucci G.: Principles of Non-Newtonian Fluid Mechanics.McGraw-Hill, 1974.
Reference: [2] Martinson L.K., Pavlov K.B.: Unsteady shear flows of a conducting fluid with a rheological power law.Magnitnaya Gidrodinamika 2 (1971), 50-58.
Reference: [3] Kalashnikov A.S.: On a nonlinear equation arising in the theory of nonlinear filtration (in Russian).Trudy Sem. Petrovsk. 4 (1978), 137-146. MR 0524529
Reference: [4] Esteban J.R., Vazquez J.L.: On the equation of turbulent filtration in one-dimensional porous media.Nonlinear Anal. 10 (1982), 1303-1325. MR 0866262
Reference: [5] Ni W.M., Serrin J.: Nonexistence theorems for singular solutions of quasilinear partial differential equations.Comm. Pure Appl. Math. 39 (1986), 379-399. Zbl 0602.35031, MR 0829846
Reference: [6] Gelfand I.M.: Some problems in the theory of quasilinear equations.Amer. Math. Soc. Transl. Ser. 2 29 (1963), 295-381. MR 0153960
Reference: [7] Keller H.B., Cohen D.S.: Some positone problems suggested by nonlinear heat generation.J. Math. Mech. 16 (1967), 1361-1376. Zbl 0152.10401, MR 0213694
Reference: [8] Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach space.SIAM Rev. 18 (1976), 620-709. MR 0415432
Reference: [9] Crandall M.G., Rabinowitz P.H.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems.Arch. Rational Mech. Anal. 58 (1975), 207-218. Zbl 0309.35057, MR 0382848
Reference: [10] Lions P.L.: On the existence of positive solutions of semilinear elliptic equations.SIAM Rev. 24 (1982), 441-467. Zbl 0511.35033, MR 0678562
Reference: [11] Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl 0541.35029, MR 0709644
Reference: [12] Guo Z.: Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems.Nonlinear Anal. 18 (1992), 957-971. Zbl 0782.35053, MR 1166534
Reference: [13] Guo Z., Webb J.R.L.: Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large.Proc. Royal Soc. Edinburgh, Sect. A 124 (1994), 189-198. Zbl 0799.35081, MR 1272439
Reference: [14] Guo Z.: On the number of positive solutions for quasilinear elliptic eigenvalue problems.Nonlinear Anal. 27 2 (1996), 229-247. Zbl 0860.35090, MR 1389480
Reference: [15] Guo Z.: Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic equations.Appl. Anal 47 (1992), 173-190. Zbl 0788.35049, MR 1333953
Reference: [16] Yang Z., Yang H.: A priori estimates for a quasilinear elliptic partial differential equations non-positone problems.Nonlinear Anal. 43 2 (2001), 173-181. Zbl 0980.35038, MR 1790100
Reference: [17] Yang Z.: Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems.J. Math. Anal. Appl. 288 (2003), 768-783. Zbl 1087.35030, MR 2020196
Reference: [18] Hai D.D.: Positive solutions of quasilinear boundary value problems.J. Math. Anal. Appl. 217 (1998), 672-686. Zbl 0893.34017, MR 1492111
Reference: [19] Lin S.S.: Positive singular solution for semilinear elliptic equations with supercritical growth.J. Differential Equations 114 (1994), 57-76. MR 1302134
Reference: [20] Yang Z.: Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation.J. Comput. Appl. Math. 197 (2006), 355-364. MR 2260411
Reference: [21] Lu Q., Yang Z., Twizell E.H.: Existence of entire explosive positive solutions of quasilinear elliptic equations.Appl. Math. Comput. 148 (2004), 359-372. MR 2015378
Reference: [22] Guo Z., Yang Z.: The structure of positive solutions to a class of quasilinear elliptic equations with a small parameter (in Chinese).Chinese Ann. Math. Ser. A 19 (1998), 385-392. MR 1641075
Reference: [23] Mitidieri E., Pohozaev S.I.: Nonexistence of positive solutions for quasilinear elliptic problem on ${\bold R}^N$.Proc. Steklov Inst. Math. 227 (1999 186-216). MR 1784317
Reference: [24] Manásevich R., Schmitt K.: Boundary value problems for quasilinear second order differential equations.Nonlinear Analysis and Boundary Value Problems (Udine), CISM Courses and Lectures, 371, Springer, Vienna, 1996, pp.79-119. MR 1465240
Reference: [25] Gidas B., Ni W.M., Nirenberg L.: Symmetry and related properties via the maximum principle.Comm. Math. Phys. 68 (1979), 209-243. Zbl 0425.35020, MR 0544879
Reference: [26] Tolksdorf P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary point.Comm. Partial Differential Equations 8 7 (1983), 773-817. MR 0700735
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_4.pdf 244.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo