Previous |  Up |  Next

Article

Title: Tanaka spaces and products of sequential spaces (English)
Author: Tanaka, Yoshio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 529-540
.
Category: math
.
Summary: We consider properties of Tanaka spaces (introduced in Mynard F., {\it More on strongly sequential spaces\/}, Comment. Math. Univ. Carolin. {\bf 43} (2002), 525--530), strongly sequential spaces, and weakly sequential spaces. Applications include product theorems for these types of spaces. (English)
Keyword: Tanaka space
Keyword: strongly sequential space
Keyword: weakly sequential space
Keyword: sequential space
Keyword: $k$-space
Keyword: inner-closed $A$-space
MSC: 54B10
MSC: 54B15
MSC: 54D50
MSC: 54D55
idZBL: Zbl 1199.54156
idMR: MR2374932
.
Date available: 2009-05-05T17:04:31Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119677
.
Reference: [1] Chen H.: An answer to a conjecture on the countable products of $k$-spaces.Proc. Amer. Math. Soc. 123 (1995), 583-587. Zbl 0813.54021, MR 1273481
Reference: [2] Engelking R.: General Topology, Heldermann Verlag, Berlin, 1988.. MR 1039321
Reference: [3] Franklin S.P.: Spaces in which sequences suffice II.Fund. Math. 61 (1967), 51-56. Zbl 0168.43502, MR 0222832
Reference: [4] Gruenhage G.: A note on the product of Fréchet spaces.Topology Proc. 3 (1978), 109-115. MR 0540482
Reference: [5] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538
Reference: [6] Kannan V.: Every compact $T_5$ sequential space is Fréchet.Fund. Math. 107 (1988), 85-90. MR 0584661
Reference: [7] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79-86. Zbl 0817.54025, MR 1293119
Reference: [8] Michael E.A.: A note on closed maps and compact sets.Israel J. Math. 2 (1964), 173-176. Zbl 0136.19303, MR 0177396
Reference: [9] Michael E.A.: Bi-quotient maps and cartesian products of quotient maps.Ann. Inst. Fourier, Grenoble 18 (1968), 287-302. Zbl 0175.19704, MR 0244964
Reference: [10] Michael E.A.: A quintuple quotient quest.General Topology Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045
Reference: [11] Michael E., Olson R.C., Siwiec F.: $A$-spaces and countably bi-quotient maps.Dissertationes Math. 133 (1976), 4-43. Zbl 0338.54006, MR 0418023
Reference: [12] Morita K.: Some results on $M$-spaces.Colloquia Math. Soc. János Bolyai 8 (1972), 489-503. MR 0365462
Reference: [13] Mynard F.: Strongly sequential spaces.Comment. Math. Univ. Carolin. 41 (2000), 143-153. Zbl 1037.54504, MR 1756935
Reference: [14] Mynard F.: More on strongly sequential spaces.Comment. Math. Univ. Carolin. 43 (2002), 525-530. Zbl 1090.54006, MR 1920528
Reference: [15] Noble N.: Products with closed projections, II.Trans. Amer. Math. Soc. 160 (1971), 169-183. Zbl 0233.54004, MR 0283749
Reference: [16] Nogura T.: The product of $\langle {\alpha_i} \rangle$-spaces.Topology Appl. 21 (1985), 251-259. MR 0812643
Reference: [17] Nogura T.: Products of Fréchet spaces.General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Top. Symposium 1986, Heldermann Verlag, Berlin, 1988, pp.371-378. Zbl 0654.54019, MR 0952623
Reference: [18] Olson R.C.: Bi-quotient maps, countably bi-sequential spaces, and related topics.General Topology Appl. 4 (1974), 1-28. Zbl 0278.54008, MR 0365463
Reference: [19] Simon P.: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolin. 21 (1980), 749-753. Zbl 0466.54022, MR 0597764
Reference: [20] Simon P.: A hedgehog in the product.Acta Univ. Carolin. Math. Phys. 39 (1998), 147-153. MR 1696588
Reference: [21] Siwiec F.: Sequence-covering and countably bi-quotient mappings.General Topology Appl. 1 (1971), 143-154. Zbl 0218.54016, MR 0288737
Reference: [22] Tanaka Y.: On products of quasi-perfect maps.Proc. Japan Acad. 46 (1970), 1070-1073. Zbl 0226.54008, MR 0296917
Reference: [23] Tanaka Y.: Products of sequential spaces.Proc. Amer. Math. Soc. 54 (1976), 371-375. Zbl 0292.54025, MR 0397665
Reference: [24] Tanaka Y.: On closedness of $C$- and $C^*$-embeddings.Pacific J. Math. 68 (1977), 283-292. Zbl 0374.54010, MR 0448299
Reference: [25] Tanaka Y.: Some necessary conditions for products of $k$-spaces.Bull. Tokyo Gakugei Univ. Ser. IV, 30 (1978), 1-16. Zbl 0427.54016, MR 0512222
Reference: [26] Tanaka Y.: Point-countable covers and $k$-networks.Topology Proc. 12 (1987), 327-349. Zbl 0676.54035, MR 0991759
Reference: [27] Tanaka Y.: Products of $k$-spaces, and questions.Comment. Math. Univ. Carolin. 41 (2000), 143-153. MR 2026168
Reference: [28] Tanaka Y.: Theory of $k$-networks II.Questions Answers Gen. Topology 19 (2001), 27-46. Zbl 0970.54023, MR 1815344
Reference: [29] Tanaka Y.: Determining covers and dominating covers.Questions Answers Gen. Topology 24 (2006), 123-141. Zbl 1111.54024, MR 2269658
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_12.pdf 234.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo