Previous |  Up |  Next

Article

Title: Antichains in the homomorphism order of graphs (English)
Author: Duffus, D.
Author: Erdös, P. L.
Author: Nešetřil, J.
Author: Soukup, L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 571-583
.
Category: math
.
Summary: Let $\Bbb G$ and $\Bbb D$, respectively, denote the partially ordered sets of homomorphism classes of finite undirected and directed graphs, respectively, both ordered by the homomorphism relation. Order theoretic properties of both have been studied extensively, and have interesting connections to familiar graph properties and parameters. In particular, the notion of a duality is closely related to the idea of splitting a maximal antichain. We construct both splitting and non-splitting infinite maximal antichains in $\Bbb G$ and in $\Bbb D$. The splitting maximal antichains give infinite versions of dualities for graphs and for directed graphs. (English)
Keyword: partially ordered set
Keyword: homomorphism order
Keyword: duality
Keyword: antichain
Keyword: splitting property
MSC: 05C99
MSC: 06A07
idZBL: Zbl 1199.06008
idMR: MR2375159
.
Date available: 2009-05-05T17:04:50Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119681
.
Reference: [1] Ahlswede R., Erdös P.L., Graham N.: A splitting property of maximal antichains.Combinatorica 15 (1995), 475-480. MR 1364020
Reference: [2] Duffus D., Sands B.: Minimum sized fibres in distributive lattices.J. Austral. Math. Soc. 70 (2001), 337-350. Zbl 1019.06002, MR 1829963
Reference: [3] Duffus D., Sands B.: Splitting numbers of grids.Electron. J. Combin. 12 (2005), #R17. Zbl 1060.06005, MR 2134180
Reference: [4] Džamonja M.: A note on the splitting property in strongly dense posets of size $\aleph_0$.Rad. Mat. 8 (1992/98), 321-326. MR 1690735
Reference: [5] Erdös P.: Graph theory and probability.Canad. J. Math. 11 (1959), 34-38. MR 0102081
Reference: [6] Erdös P., Hajnal A.: On chromatic number of graphs and set systems.Acta Math. Hungar. 17 (1966), 61-99. MR 0193025
Reference: [7] Erdös P., Rényi A.: On random graphs I.Publ. Math. Debrecen 6 (1959), 290-297. MR 0120167
Reference: [8] Erdös P.L.: Splitting property in infinite posets.Discrete Math. 163 (1997), 251-256. MR 1428578
Reference: [9] Erdös P.L., Soukup L.: How to split antichains in infinite posets.Combinatorica 27 2 (2007), 147-161. Zbl 1136.06002, MR 2321920
Reference: [10] Foniok J., Nešetřil J., Tardif C.: Generalized dualities and maximal finite antichains in the homomorphism order of relational structures.to appear in European J. Combin.; extended abstract in Lecture Notes in Comput. Sci. 4271, Springer, Berlin, 2006, pp.27-36. MR 2408365
Reference: [11] Hell P., Nešetřil J.: Graphs and Homomorphisms.Oxford University Press, Oxford, 2004. MR 2089014
Reference: [12] Nešetřil J.: Sparse incomparability for relational structures.in preparation.
Reference: [13] Nešetřil J., Ossona de Mendez P.: Cuts and bounds.Discrete Math. 302 1-3 (2005), 211-224. MR 2179644
Reference: [14] Nešetřil J., Pultr A.: On classes of relations and graphs determined by subobjects and factorobjects.Discrete Math. 22 (1978), 287-300. MR 0522724
Reference: [15] Nešetřil J., V. Rödl V.: Chromatically optimal rigid graphs.J. Combin. Theory Ser. (B) 46 (1989), 133-141. MR 0992987
Reference: [16] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and good characterisations).J. Combin. Theory Ser. (B) 80 (2000), 80-97. Zbl 1024.05078, MR 1778201
Reference: [17] Nešetřil J., Tardif C.: On maximal finite antichains in the homomorphism order of directed graphs.Discuss. Math. Graph Theory 23 (2003), 325-332. Zbl 1057.05036, MR 2070160
Reference: [18] Nešetřil J., Zhu X.: On sparse graphs with given colorings and homomorphisms.J. Combin. Theory Ser. (B) 90 (2004), 161-172. Zbl 1033.05044, MR 2041324
Reference: [19] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North-Holland, Amsterdam, 1980. MR 0563525
Reference: [20] Welzl E.: Color families are dense.Theoret. Comput. Sci. 17 (1982), 29-41. Zbl 0482.68063, MR 0644791
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_2.pdf 252.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo