# Article

Full entry | PDF   (0.2 MB)
Keywords:
semigroup; variety; nil-variety; 0-reduced identity; substitutive identity; permutable identity; lattice of subvarieties; modular element of a lattice; upper-modular element of a lattice
Summary:
A semigroup variety is called {\it modular\/} if it is a modular element of the lattice of all semigroup varieties. We obtain a strong necessary condition for a semigroup variety to be modular. In particular, we prove that every modular nil-variety may be given by 0-reduced identities and substitutive identities only. (An identity $u=v$ is called {\it substitutive\/} if the words $u$ and $v$ depend on the same letters and $v$ may be obtained from $u$ by renaming of letters.) We completely determine all commutative modular varieties and obtain an essential information about modular varieties satisfying a permutable identity.
References:
[1] Aĭzenštat A.Ya.: On some sublattices of the lattice of semigroup varieties. in E.S. Lyapin (ed.), Contemp. Algebra, Leningrad State Pedagogical Institute, Leningrad, 1 (1974), 3-15 (Russian). MR 0412306
[2] Evans T.: The lattice of semigroup varieties. Semigroup Forum 2 (1971), 1-43. MR 0284528 | Zbl 0225.20043
[3] Ježek J.: The lattice of equational theories. Part I: Modular elements. Czechoslovak Math. J. 31 (1981), 127-152. MR 0604120
[4] Ježek J., McKenzie R.N.: Definability in the lattice of equational theories of semigroups. Semigroup Forum 46 (1993), 199-245. MR 1200214
[5] Mel'nik I.I.: On varieties of $Ømega$-algebras. in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 1 (1969), 32-40 (Russian). MR 0253966
[6] Mel'nik I.I.: On varieties and lattices of varieties of semigroups. in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 2 (1970), 47-57 (Russian). MR 0412307 | Zbl 0244.20071
[7] Pollák Gy.: On the consequences of permutation identities. Acta Sci. Math. (Szeged) 34 (1973), 323-333. MR 0322084
[8] Saliĭ V.N.: Equationally normal varieties of semigroups. Izv. Vysš. Učebn. Zaved. Matematika no. 5 (1969), 61-68 (Russian). MR 0263956
[9] Vernikov B.M.: Special elements of the lattice of overcommutative varieties of semigroups. Mat. Zametki 70 (2001), 670-678 (Russian); English translation: Math. Notes 70 (2001), 608-615. MR 1882341 | Zbl 1036.20052
[10] Vernikov B.M.: Upper-modular elements of the lattice of semigroup varieties. Algebra Universalis, to appear. MR 2470588 | Zbl 1161.08002
[11] Vernikov B.M.: Lower-modular elements of the lattice of semigroup varieties. Semigroup Forum, to appear. MR 2353282 | Zbl 1143.20039
[12] Vernikov B.M., Volkov M.V.: Lattices of nilpotent semigroup varieties. L.N. Shevrin (ed.), Algebraic Systems and their Varieties, Ural State University, Sverdlovsk (1988), pp.53-65 (Russian). Zbl 0813.20064
[13] Vernikov B.M., Volkov M.V.: Commuting fully invariant congruences on free semigroups. Contributions to General Algebra, 12 (Vienna, 1999), pp.391-417, Heyn, Klagenfurt, 2000. MR 1777677 | Zbl 0978.20028
[14] Vernikov B.M., Volkov M.V.: Modular elements of the lattice of semigroup varieties II. Contributions to General Algebra, 17, pp.173-190, Heyn, Klagenfurt, 2006. MR 2237815 | Zbl 1108.20058
[15] Volkov M.V.: Commutative semigroup varieties with distributive subvariety lattices. Contributions to General Algebra, 7, pp.351-359, Hölder-Pichler-Tempsky, Vienna, 1991. MR 1143098 | Zbl 0762.20022
[16] Volkov M.V.: Semigroup varieties with commuting fully invariant congruences on free objects. Contemp. Math., 131, Part 3, pp.295-316, American Mathematical Society, Providence, 1992. MR 1175889 | Zbl 0768.20025
[17] Volkov M.V.: Modular elements of the lattice of semigroup varieties. Contributions to General Algebra, 16, pp.275-288, Heyn, Klagenfurt, 2005. MR 2166965 | Zbl 1108.20058

Partner of