Previous |  Up |  Next

Article

Title: MAD families and $P$-points (English)
Author: García-Ferreira, S.
Author: Szeptycki, P. J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 699-705
.
Category: math
.
Summary: The Katětov ordering of two maximal almost disjoint (MAD) families $\Cal A$ and $\Cal B$ is defined as follows: We say that $\Cal A\leq_K \Cal B$ if there is a function $f: \omega \to \omega$ such that $f^{-1}(A)\in \Cal I(\Cal B)$ for every $A\in \Cal I(\Cal A)$. In [Garcia-Ferreira S., Hru\v sák M., Ordering MAD families a la Katětov, J. Symbolic Logic 68 (2003), 1337–1353] a MAD family is called $K$-uniform if for every $X\in \Cal I(\Cal A)^+$, we have that $\Cal A|_X\leq_K \Cal A$. We prove that CH implies that for every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that the set of all Rudin-Keisler predecessors of $p$ is dense in the boundary of $\bigcup \Cal A^*$ as a subspace of the remainder $\beta (\omega )\setminus \omega $. This result has a nicer topological interpretation: The symbol $\Cal F(\Cal A)$ will denote the Franklin compact space associated to a MAD family $\Cal A$. Given an ultrafilter $p\in \beta(\omega)\setminus \omega$, we say that a space $X$ is a $\text{FU}(p)$-space if for every $A\subseteq X$ and $x\in cl_X(A)$ there is a sequence $(x_n)_{n < \omega}$ in $A$ such that $x = p$-$\lim_{n \to \infty}x_n$ (that is, for every neigborhood $V$ of $x$, we have that $\{n < \omega : x_n \in V\}\in p$). [CH] For every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space. We also establish the following. [CH] For two $P$-points $p,q\in \omega^*$, the following are equivalent. (1) $q\leq_{\text{RK}}p$. (2) For every $MAD$ family $\Cal A$, the space $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space whenever it is a $\text{FU}(q)$-space. (English)
Keyword: Franklin compact space
Keyword: $P$-point
Keyword: $\text{FU}(p)$-space
Keyword: maximal almost disjoint family
Keyword: Katětov ordering
Keyword: Rudin-Keisler ordering
MSC: 03E05
MSC: 03E50
MSC: 54A99
MSC: 54B99
idZBL: Zbl 1199.03028
idMR: MR2375170
.
Date available: 2009-05-05T17:05:48Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119692
.
Reference: [1] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [2] Boldjiev B., Malykhin V.I.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolin. 31 (1990), 23-25. Zbl 0696.54020, MR 1056166
Reference: [3] Franklin S.P.: Spaces in which sequences suffice II.Fund. Math. 61 (1967), 51-56. Zbl 0168.43502, MR 0222832
Reference: [4] Garcia-Ferreira S.: On $FU(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolin. 32 (1991), 161-171. Zbl 0789.54032, MR 1118299
Reference: [5] Garcia-Ferreira S., Hrušák M.: Ordering MAD families a la Katětov.J. Symbolic Logic 68 (2003), 1337-1353. Zbl 1055.03027, MR 2017358
Reference: [6] Garcia-Ferreira S., Malykhin V.I.: $p$-sequentiality and $p$-Freéchet-Urysohn property of Franklin compact spaces.Proc. Amer. Math. Soc. 124 (1996), 2267-2273. MR 1327014
Reference: [7] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics vol. 43, Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [8] Mathias A.R.D.: Happy families.Ann. Math. Logic 12 (1977), 59-111. Zbl 0369.02041, MR 0491197
Reference: [9] Rudin W.: Homogeneity problems in the theory of Čech compactifications.Duke Math. J. 23 (1956), 409-419. Zbl 0073.39602, MR 0080902
Reference: [10] Sierpiński W.: Cardinal and Ordinal Numbers.Panstwowe Wydawnictwo Naukowe, Warsaw, 1958. MR 0095787
Reference: [11] Simon P.: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolin. 21 (1980), 749-753. Zbl 0466.54022, MR 0597764
Reference: [12] Wimmers E.L.: The Shelah $P$-point independence theorem.Israel J. Math. 43 (1982), 28-48. Zbl 0511.03022, MR 0728877
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_13.pdf 216.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo