Title:
|
MAD families and $P$-points (English) |
Author:
|
García-Ferreira, S. |
Author:
|
Szeptycki, P. J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
699-705 |
. |
Category:
|
math |
. |
Summary:
|
The Katětov ordering of two maximal almost disjoint (MAD) families $\Cal A$ and $\Cal B$ is defined as follows: We say that $\Cal A\leq_K \Cal B$ if there is a function $f: \omega \to \omega$ such that $f^{-1}(A)\in \Cal I(\Cal B)$ for every $A\in \Cal I(\Cal A)$. In [Garcia-Ferreira S., Hru\v sák M., Ordering MAD families a la Katětov, J. Symbolic Logic 68 (2003), 1337–1353] a MAD family is called $K$-uniform if for every $X\in \Cal I(\Cal A)^+$, we have that $\Cal A|_X\leq_K \Cal A$. We prove that CH implies that for every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that the set of all Rudin-Keisler predecessors of $p$ is dense in the boundary of $\bigcup \Cal A^*$ as a subspace of the remainder $\beta (\omega )\setminus \omega $. This result has a nicer topological interpretation: The symbol $\Cal F(\Cal A)$ will denote the Franklin compact space associated to a MAD family $\Cal A$. Given an ultrafilter $p\in \beta(\omega)\setminus \omega$, we say that a space $X$ is a $\text{FU}(p)$-space if for every $A\subseteq X$ and $x\in cl_X(A)$ there is a sequence $(x_n)_{n < \omega}$ in $A$ such that $x = p$-$\lim_{n \to \infty}x_n$ (that is, for every neigborhood $V$ of $x$, we have that $\{n < \omega : x_n \in V\}\in p$). [CH] For every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space. We also establish the following. [CH] For two $P$-points $p,q\in \omega^*$, the following are equivalent. (1) $q\leq_{\text{RK}}p$. (2) For every $MAD$ family $\Cal A$, the space $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space whenever it is a $\text{FU}(q)$-space. (English) |
Keyword:
|
Franklin compact space |
Keyword:
|
$P$-point |
Keyword:
|
$\text{FU}(p)$-space |
Keyword:
|
maximal almost disjoint family |
Keyword:
|
Katětov ordering |
Keyword:
|
Rudin-Keisler ordering |
MSC:
|
03E05 |
MSC:
|
03E50 |
MSC:
|
54A99 |
MSC:
|
54B99 |
idZBL:
|
Zbl 1199.03028 |
idMR:
|
MR2375170 |
. |
Date available:
|
2009-05-05T17:05:48Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119692 |
. |
Reference:
|
[1] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[2] Boldjiev B., Malykhin V.I.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolin. 31 (1990), 23-25. Zbl 0696.54020, MR 1056166 |
Reference:
|
[3] Franklin S.P.: Spaces in which sequences suffice II.Fund. Math. 61 (1967), 51-56. Zbl 0168.43502, MR 0222832 |
Reference:
|
[4] Garcia-Ferreira S.: On $FU(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolin. 32 (1991), 161-171. Zbl 0789.54032, MR 1118299 |
Reference:
|
[5] Garcia-Ferreira S., Hrušák M.: Ordering MAD families a la Katětov.J. Symbolic Logic 68 (2003), 1337-1353. Zbl 1055.03027, MR 2017358 |
Reference:
|
[6] Garcia-Ferreira S., Malykhin V.I.: $p$-sequentiality and $p$-Freéchet-Urysohn property of Franklin compact spaces.Proc. Amer. Math. Soc. 124 (1996), 2267-2273. MR 1327014 |
Reference:
|
[7] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics vol. 43, Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[8] Mathias A.R.D.: Happy families.Ann. Math. Logic 12 (1977), 59-111. Zbl 0369.02041, MR 0491197 |
Reference:
|
[9] Rudin W.: Homogeneity problems in the theory of Čech compactifications.Duke Math. J. 23 (1956), 409-419. Zbl 0073.39602, MR 0080902 |
Reference:
|
[10] Sierpiński W.: Cardinal and Ordinal Numbers.Panstwowe Wydawnictwo Naukowe, Warsaw, 1958. MR 0095787 |
Reference:
|
[11] Simon P.: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolin. 21 (1980), 749-753. Zbl 0466.54022, MR 0597764 |
Reference:
|
[12] Wimmers E.L.: The Shelah $P$-point independence theorem.Israel J. Math. 43 (1982), 28-48. Zbl 0511.03022, MR 0728877 |
. |