Previous |  Up |  Next

Article

Title: Archimedean frames, revisited (English)
Author: Martínez, Jorge
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 25-44
.
Category: math
.
Summary: This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called {\it joinfitness\/} and is {\it Choice-free\/}. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an {\it infinitesimal\/} element arises naturally, and the join of suitably chosen infinitesimals defines the joinfit nucleus. The paper concludes with mostly Choice-free applications of these ideas to commutative rings and their radical ideals. (English)
Keyword: archimedean lattice
Keyword: joinfit coreflection
Keyword: infinitesimals
Keyword: fitness conditions
MSC: 06D22
MSC: 18A32
MSC: 18A40
idZBL: Zbl 1212.06025
idMR: MR2432818
.
Date available: 2009-05-05T17:06:16Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119699
.
Reference: [Ba96] Banaschewski B.: Radical ideals and coherent frames.Comment. Math. Univ. Carolin. 37 2 (1996), 349-370. Zbl 0853.06014, MR 1399006
Reference: [Ba97] Banaschewski B.: Pointfree topology and the spectrum of $f$-rings.in Ordered Algebraic Structures, W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.123-148. MR 1445110
Reference: [Ba02] Banaschewski B.: Functorial maximal spectra.J. Pure Appl. Algebra 168 (2002), 327-346. Zbl 0998.06007, MR 1887162, 10.1016/S0022-4049(01)00101-3
Reference: [BaP96] Banaschewski B., Pultr A.: Booleanization.Cahiers Topologie Géom. Différentielle Catég. 37 (1996), 1 41-60. Zbl 0848.06010, MR 1383446
Reference: [DM83] De Marco G.: Projectivity of pure ideals.Rend. Sem. Mat. Univ. Padova 69 (1983), 289-304. Zbl 0543.13004, MR 0717003
Reference: [DPR81] Dickman R.F., Porter J.R., Rubin L.R.: Completely regular absolutes and projective objects.Pacific J. Math. 94 2 (1981), 277-295. Zbl 0426.54005, MR 0628580, 10.2140/pjm.1981.94.277
Reference: [HM07] Hager A.W., Martínez J.: Patch-generated frames and projectable hulls.Appl. Categ. Structures 15 (2007), 49-80. Zbl 1122.06007, MR 2306538, 10.1007/s10485-007-9062-y
Reference: [HS68] Herrlich H., Strecker G.: $H$-closed spaces and reflective subcategories.Math. Ann. 177 (1968), 302-309. Zbl 0157.29104, MR 0234427, 10.1007/BF01350722
Reference: [HS79] Herrlich H., Strecker G.: Category Theory.Sigma Series in Pure Mathematics 1, Heldermann Verlag, Berlin, 1979. Zbl 1125.18300, MR 0571016
Reference: [Ho69] Hochster M.: Prime ideal structure in commutative rings.Trans. Amer. Math. Soc. 142 (1969), 43-60. Zbl 0184.29401, MR 0251026, 10.1090/S0002-9947-1969-0251026-X
Reference: [J82] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3, Cambridge Univ. Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074
Reference: [M73] Martínez J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. MR 0349503, 10.1007/BF02945124
Reference: [M07] Martínez J.: Disjointifiable $\ell$-groups.Algebra Universalis, to appear.
Reference: [MZ03] Martínez J., Zenk E.R.: When an algebraic frame is regular.Algebra Universalis 50 (2003), 231-257. Zbl 1092.06011, MR 2037528, 10.1007/s00012-003-1841-1
Reference: [MZ07a] Martínez J., Zenk E.R.: Regularity in algebraic frames.J. Pure Appl. Algebra 211 (2007), 566-580. Zbl 1121.06010, MR 2341271, 10.1016/j.jpaa.2007.02.008
Reference: [MZ07b] Martínez J., Zenk E.R.: Epicompletion in frames with skeletal maps, I: Compact regular frames.Appl. Categ. Structures, to appear. MR 2421540
Reference: [MZ07c] Martínez J., Zenk E.R.: Epicompletion in frames with skeletal maps, II: Compact normal joinfit frames.Appl. Categ. Structures, to appear.
Reference: [MZ07d] Martínez J., Zenk E.R.: Epicompletion in frames with skeletal maps, III: Coherent normal Yosida frames.submitted.
Reference: [Mo54] Monteiro A.: L'arithmétique des filtres et les espaces topologiques.Segundo Symposium de Matemática, Villavicencio (Mendoza), 1954, pp.129-162. Zbl 0318.06019, MR 0074805
Reference: [PT01] Pedicchio M.C., Tholen W.: Special Topics in Order, Topology, Algebra and Sheaf Theory.Cambridge Univ. Press, Cambridge, 2001. Zbl 1034.18001, MR 2054273
Reference: [ST93] Snodgrass J.T., Tsinakis C.: Finite-valued algebraic lattices.Algebra Universalis 30 (1993), 311-318. Zbl 0806.06011, MR 1225870, 10.1007/BF01190439
Reference: [U56] Utumi Y.: On quotient rings.Osaka Math. J. 8 (1956), 1-18. Zbl 0070.26601, MR 0078966
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_4.pdf 295.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo