Previous |  Up |  Next

Article

Title: AB-compacta (English)
Author: Gorelic, Isaac
Author: Juhász, István
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 141-146
.
Category: math
.
Summary: We define a compactum $X$ to be AB-compact if the {\it cofinality\/} of the character $\chi(x,Y)$ is countable whenever $x\in Y$ and $Y\subset X$. It is a natural open question if every AB-compactum is necessarily first countable. We strengthen several results from [Arhangel'skii and Buzyakova, {\it Convergence in compacta and linear Lindelöfness\/}, Comment. Math. Univ. Carolin. {\bf 39} (1998), no. 1, 159--166] by proving the following results. \roster \item Every AB-compactum is countably tight. \item If $\frak p = \frak c$ then every AB-compactum is Fr\`echet-Urysohn. \item If $\frak c < \aleph_\omega$ then every AB-compactum is first countable. \item The cardinality of any AB-compactum is at most $2^{< \frak c}$. \endroster (English)
Keyword: compact space
Keyword: first countable space
Keyword: character of a point
MSC: 03E65
MSC: 54A20
MSC: 54A25
MSC: 54A35
MSC: 54D30
idZBL: Zbl 1212.54016
idMR: MR2433631
.
Date available: 2009-05-05T17:07:03Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119708
.
Reference: [1] Arhangel'skii A.V., Buzyakova R.Z.: Convergence in compacta and linear Lindelöfness.Comment. Math. Univ. Carolin. 39 (1998), 1 159-166. Zbl 0937.54022, MR 1623006
Reference: [2] Babai L., Máté A.: Inner set mappings on locally compact spaces.in: Topics in topology (Proc. Colloq., Keszthely, 1972), Colloq. Math. Soc. János Bolyai, Vol. 8, North-Holland, Amsterdam, 1974, pp.77-95. MR 0379202
Reference: [3] Hodel R.E., Vaughan J.E.: Reflection theorems for cardinal functions.Topology Appl. 100 (2000), 1 47-66. Zbl 0943.54003, MR 1731704, 10.1016/S0166-8641(99)00056-5
Reference: [4] Juhász I.: Cardinal functions in topology - ten years later.Math. Centre Tract 123, Amsterdam, 1980. MR 0576927
Reference: [5] Juhász I., Szentmiklóssy Z.: Convergent free sequences in compact spaces.Proc. Amer. Math. Soc. 116 (1992), 1153-1160. MR 1137223, 10.2307/2159502
Reference: [6] Kunen K.: Locally compact linearly Lindelöf spaces.Comment. Math. Univ. Carolin. 43 (2002), 1 155-158. Zbl 1090.54019, MR 1903314
Reference: [7] Kunen K.: Small locally compact linearly Lindelöf spaces.Topology Proc. 29 (2005), 1 193-198. Zbl 1114.54015, MR 2182928
Reference: [8] Pearl E.: Linearly Lindelöf problems.in: Open Problems in Topology II, E. Pearl editor, Elsevier, 2007, pp. 225-231. MR 2367385
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_13.pdf 189.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo