Previous |  Up |  Next

Article

Title: On approximation of functions by certain operators preserving $x^2$ (English)
Author: Rempulska, Lucyna
Author: Tomczak, Karolina
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 579-593
.
Category: math
.
Summary: In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$. (English)
Keyword: positive linear operators
Keyword: polynomial weighted space
Keyword: degree of approximation
MSC: 41A25
MSC: 41A36
idZBL: Zbl 1212.41054
idMR: MR2493939
.
Date available: 2009-05-05T17:13:16Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119747
.
Reference: [1] Baskakov V.A.: An example of a sequence of linear positive operators in the space of continuous functions.Dokl. Akad. Nauk SSSR 113 (1957), 249-251. MR 0094640
Reference: [2] Becker M.: Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces.Indiana Univ. Math. J. 27 1 (1978), 127-142. MR 0493079, 10.1512/iumj.1978.27.27011
Reference: [3] De Vore R.A.: The Approximation of Continuous Functions by Positive Linear Operators.Springer, Berlin, New York, 1972. MR 0420083
Reference: [4] De Vore R.A., Lorentz G.G.: Constructive Approximation.Springer, Berlin, New York, 1993. MR 1261635
Reference: [5] Ditzian Z., Totik V.: Moduli of Smoothness.Springer, New York, 1987. Zbl 0715.46043, MR 0914149
Reference: [6] Duman O., Özarslan M.A.: MKZ type operators providing a better estimation on $[1/2,1)$.Canad. Math. Bull. 50 (2007), 434-439. Zbl 1132.41318, MR 2344178, 10.4153/CMB-2007-042-8
Reference: [7] Duman O., Özarslan M.A.: Szász-Mirakyan type operators providing a better error estimation.Appl. Math. Lett. 20 12 (2007), 1184-1188. MR 2384243, 10.1016/j.aml.2006.10.007
Reference: [8] King J.P.: Positive linear operators which preserve $x^2$.Acta Math. Hungar. 99 (2003), 203-208. Zbl 1027.41028, MR 1973095, 10.1023/A:1024571126455
Reference: [9] Kirov G.H.: A generalization of the Bernstein polynomials.Math. Balcanica 2 2 (1992), 147-153. Zbl 0838.41017, MR 1182946
Reference: [10] Kirov G.H., Popova L.: A generalization of the linear positive operators.Math. Balcanica 7 2 (1993), 149-162. Zbl 0833.41016, MR 1270375
Reference: [11] Rempulska L., Walczak Z.: Modified Szász-Mirakyan operators.Math. Balcanica 18 (2004), 53-63. Zbl 1079.41022, MR 2076077
Reference: [12] Rempulska L., Skorupka M.: Approximation properties of modified gamma operators.Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. Zbl 1148.41025, MR 2356794, 10.1080/10652460701510527
Reference: [13] Rempulska L., Skorupka M.: On approximation by Post-Widder and Stancu operators preserving $x^2$.Kyung. Math. J., to appear. MR 2527373
Reference: [14] Stancu D.D.: On the beta approximating operators of second kind.Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. Zbl 0856.41019, MR 1608424
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_5.pdf 239.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo