Previous |  Up |  Next

Article

Title: On weak solutions of steady Navier-Stokes equations for monatomic gas (English)
Author: Březina, J.
Author: Novotný, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 611-632
.
Category: math
.
Summary: We use $L^\infty$ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma>{1\over3}(1+\sqrt{13})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma>{1\over8}(3+\sqrt{41}) \approx1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma\le{5\over3}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions. (English)
Keyword: steady compressible Navier-Stokes equations
Keyword: periodic domain
Keyword: isentropic flow
Keyword: existence of the weak solution
Keyword: potential theory
MSC: 35D05
MSC: 35Q30
MSC: 76D05
MSC: 76N15
idZBL: Zbl 1212.35345
idMR: MR2493941
.
Date available: 2009-05-05T17:13:26Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119749
.
Reference: [1] Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory.Springer, Berlin, 1996. Zbl 0834.46021, MR 1411441
Reference: [2] Calderon A.P.: Lebesgue spaces of differentiable functions and distributions.in Partial Differential Equations, Proc. Sympos. Pure Math., no. 4, Amer. Math. Soc., Providence, Rhode Island, 1961, pp.33-49. Zbl 0195.41103, MR 0143037
Reference: [3] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511-547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835
Reference: [4] Ebin D.B.: Viscous fluids in a domain with frictionless boundary.in Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel and R. Thiele, Eds., Teubner, Leipzig, 1983, pp.93-110. Zbl 0525.58030, MR 0730604
Reference: [5] Feireisl E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable.Comment. Math. Univ. Carolin. 42 1 (2001), 83-98. Zbl 1115.35096, MR 1825374
Reference: [6] Feireisl E.: Dynamics of Viscous Compressible Fluids.Oxford University Press, Oxford, 2003. Zbl 1080.76001, MR 2040667
Reference: [7] Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids.J. Math. Fluid Dynamics 3 (2001), 358-392. MR 1867887
Reference: [8] Frehse J., Goj S., Steinhauer M.: $L^p$-estimates for the Navier-Stokes equations for steady compressible flow.Manuscripta Math. 116 (2005), 3 265-275. Zbl 1072.35143, MR 2130943, 10.1007/s00229-004-0513-6
Reference: [9] Hoff D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data.Arch. Rational Mech. Anal. 132 (1995), 1-14. Zbl 0836.76082, MR 1360077, 10.1007/BF00390346
Reference: [10] Lions P.-L.: Compressible models.Mathematical Topics in Fluid Dynamics, vol. 2, Oxford Science Publication, Oxford, 1998. Zbl 0908.76004, MR 1637634
Reference: [11] Nečas J.: Les Methodes Directes en théorie des Équations Elliptiques.Masson & CIE, Éditeurs, Paris, 1967. MR 0227584
Reference: [12] Novo S., Novotný A.: On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square integrable.J. Math. Kyoto Univ. 42 3 (2002), 531-550. MR 1967222
Reference: [13] Novotný A.: Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via decomposition method.Comment. Math. Univ. Carolin. 37 2 (1996), 305-342. MR 1399004
Reference: [14] Novotný A., Padula M.: Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces.Siberian Math. J. 34 (1991), 120-146. MR 1255466
Reference: [14] Novotný A., Padula M.: Existence and uniqueness of stationary solutions of equations of a compressible viscous heat-conductive fluid for large potential and small nonpotential external forces.Siberian Math. J. 34 (1993), 898-922. MR 1255466, 10.1007/BF00971405
Reference: [15] Novotný A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow.Oxford University Press, Oxford, 2004. MR 2084891
Reference: [16] Plotnikov P.I., Sokolowski J.: Concentrations of stationary solutions to compressible Navier-Stokes equations.Comm. Math. Phys. 258 (2005), 3 567-608. MR 2172011, 10.1007/s00220-005-1358-x
Reference: [17] Plotnikov P.I., Sokolowski J.: Stationary solutions of Navier-Stokes equations for diatomic gases.Russian Math. Surveys 62 (2007), 3 561-593. Zbl 1139.76049, MR 2355421, 10.1070/RM2007v062n03ABEH004414
Reference: [18] Serre D.: Variations de grande amplitude pour la densité d'un fluid visqueux compressible.Physica D 48 (1991), 113-128. MR 1098658, 10.1016/0167-2789(91)90055-E
Reference: [19] Tartar L.: Compensated compactness and applications to partial differential equations.in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, L.J. Knopps, Ed., Research Notes in Math., no. 39, Pitman, Boston, 1979, pp.138-211. Zbl 0437.35004, MR 0584398
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_7.pdf 322.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo