Previous |  Up |  Next

Article

Title: Closed embeddings into complements of $\Sigma$-products (English)
Author: Arhangel'skii, A. V.
Author: Hušek, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 647-655
.
Category: math
.
Summary: In some sense, a dual property to that of Valdivia compact is considered, namely the property to be embedded as a closed subspace into a complement of a $\Sigma$-subproduct of a Tikhonov cube. All locally compact spaces are co-Valdivia spaces (and only those among metrizable spaces or spaces having countable type). There are paracompact non-locally compact co-Valdivia spaces. A possibly new type of ultrafilters lying in between P-ultrafilters and weak P-ultrafilters is introduced. Under Martin axiom and negation of CH, no countable nowhere dense space is a co-Valdivia space. (English)
Keyword: $\Sigma$-product
Keyword: Tikhonov cube
Keyword: Valdivia compact
Keyword: locally compact space
MSC: 54B10
MSC: 54C25
MSC: 54D35
MSC: 54D45
idZBL: Zbl 1212.54082
idMR: MR2493944
.
Date available: 2009-05-05T17:13:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119752
.
Reference: [1] Arhangel'skii A.V.: Two types of remainders of topological groups.Comment. Math. Univ. Carolin. 49 (2008), 119-126. Zbl 1212.54086, MR 2433629
Reference: [2] Corson H.H.: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785-796. Zbl 0095.37302, MR 0107222, 10.2307/2372929
Reference: [3] Kalenda O.: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), 1-85. Zbl 0983.46021, MR 1792980
Reference: [4] Kalenda O.: On the class of continuous images of Valdivia compacta.Extracta Math. 18 (2003), 65-80. Zbl 1159.46306, MR 1989298
Reference: [5] Noble N.: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187-198. Zbl 0229.54028, MR 0257987, 10.1090/S0002-9947-1970-0257987-5
Reference: [6] Šapirovskii B.: On the density of topological spaces.Soviet Math. Dokl. 13 (1972), 1271-1275. MR 0383331
Reference: [7] Šapirovskii B.: On separability and metrizability of spaces with Souslin's condition.Soviet Math. Dokl. 13 (1972), 1633-1638. MR 0322801
Reference: [8] Tall F.D.: The countable chain condition versus separability - applications of Martin's axiom.General Topology Appl. 4 (1974), 315-339. Zbl 0293.54003, MR 0423284, 10.1016/0016-660X(74)90010-5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_10.pdf 224.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo