Previous |  Up |  Next

Article

Title: The Lindelöf property and pseudo-$\aleph_1$-compactness in spaces and topological groups (English)
Author: Hernández, Constancio
Author: Tkachenko, Mikhail
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 4
Year: 2008
Pages: 677-692
.
Category: math
.
Summary: We introduce and study, following Z. Frol'{\i}k, the class $\Cal B(\Cal P)$ of regular $P$-spaces $X$ such that the product $X\times Y$ is pseudo-$\aleph_1$-compact, for every regular pseudo-$\aleph_1$-compact $P$-space $Y$. We show that every pseudo-$\aleph_1$-compact space which is locally $\Cal B(\Cal P)$ is in $\Cal B(\Cal P)$ and that every regular Lindelöf $P$-space belongs to $\Cal B(\Cal P)$. It is also proved that all pseudo-$\aleph_1$-compact $P$-groups are in $\Cal B(\Cal P)$. The problem of characterization of subgroups of $\Bbb R$-factor\-izable (equivalently, pseudo-$\aleph_1$-compact) $P$-groups is considered as well. We give some necessary conditions on a topological $P$-group to be a subgroup of an $\Bbb R$-factorizable $P$-group and deduce that there exists an $\omega $-narrow $P$-group that cannot be embedded as a subgroup into any $\Bbb R$-factorizable $P$-group. The class of $\sigma $-products of second-countable topological groups is especially interesting. We prove that {\it all subgroups\/} of the groups in this class are perfectly $\kappa $-normal, $\Bbb R$-factor\-izable, and have countable cellularity. If, in addition, $H$ is a closed subgroup of a $\sigma $-product of second-countable groups, then $H$ is an Efimov space and satisfies $\operatorname{cel}_\omega (H)\leq \omega $. (English)
Keyword: pseudo-$\aleph_1$-compact space
Keyword: $\Bbb R$-factorizable group
Keyword: cellularity
Keyword: $\sigma$-product
MSC: 22A05
MSC: 54B50
MSC: 54D20
idZBL: Zbl 1212.54099
idMR: MR2493947
.
Date available: 2009-05-05T17:13:57Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119755
.
Reference: [1] Arhangel'skii A.V., Ranchin D.V.: Everywhere dense subspaces of topological products and properties associated with final compactness.Vestnik Moskov. Univ. Ser. I Mat. Meh. (1982), 6 21-28. MR 0685258
Reference: [2] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542, 10.4153/CJM-1976-068-9
Reference: [3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088, 10.2140/pjm.1975.60.31
Reference: [4] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer, New York, Heidelberg, Berlin, 1974. Zbl 0298.02004, MR 0396267
Reference: [5] de Leo L., Tkachenko M.G.: The maximal $ømega $-narrow group topology on Abelian groups.Houston J. Math., to appear.
Reference: [6] Efimov B.A.: Dyadic compacta.Trudy Moskov. Mat. Obshch. 14 (1965), 211-247 (in Russian). MR 0202105
Reference: [7] Frolík Z.: Generalizations of compactness and the Lindelöf property.Czechoslovak Math. J. 9 (84) (1959), 172-211. MR 0105075
Reference: [8] Frolík Z.: The topological product of two pseudocompact spaces.Czechoslovak Math. J. 10 (1960), 339-349. MR 0116304
Reference: [9] Glicksberg I.: Stone-Čech compactifications of products.Trans. Amer. Math. Soc. 90 (1959), 369-382. Zbl 0089.38702, MR 0105667
Reference: [10] Guran I.: On topological groups close to being Lindelöf.Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002
Reference: [11] Hernández C., Tkachenko M.G.: Subgroups and products of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolin. 45 1 (2004), 153-167. MR 2076867
Reference: [12] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [13] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products.Dokl. Akad. Nauk SSSR 213 4 (1973), 774-776 (in Russian). MR 0339073
Reference: [14] Noble N.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261, 10.1090/S0002-9947-1969-0250261-4
Reference: [15] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups.Russian Math. Surveys 31 (1976), 19-30.
Reference: [16] Tkachenko M.G.: Some results on inverse spectra I.Comment. Math. Univ. Carolin. 22 3 (1981), 621-633. Zbl 0478.54005, MR 0633589
Reference: [17] Tkachenko M.G.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960, 10.1016/S0166-8641(98)00051-0
Reference: [18] Tkachenko M.G.: Complete $\aleph_0$-bounded groups need not be $\Bbb R$-factorizable.Comment. Math. Univ. Carolin. 42 3 (2001), 551-559. Zbl 1053.54045, MR 1860244
Reference: [19] Tkachenko M.G.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.Topology Appl. 136 (2004), 135-167. Zbl 1039.54020, MR 2023415, 10.1016/S0166-8641(03)00217-7
Reference: [20] Uspenskij V.V.: On continuous images of Lindelöf topological groups.Soviet Math. Dokl. 32 (1985), 802-806. Zbl 0602.22003, MR 0821360
Reference: [21] Uspenskij V.V.: Topological groups and Dugundji compacta.Math. USSR Sbornik 67 (1990), 555-580; Russian original in Mat. Sbornik 180 (1989), 1092-1118. Zbl 0702.22002, MR 1019483
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-4_13.pdf 297.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo