Previous |  Up |  Next


Title: Über das Lokalisierungsprinzip bei mehrdimensionalen Shannonschen und konjugierten Shannonschen Abtastreihen (German)
Title: On the localization principle for multi-dimensional Shannon and conjugate Shannon sampling series (English)
Author: Boche, Holger
Language: German
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 5
Issue: 1
Year: 1997
Pages: 27-37
Category: math
MSC: 41A05
MSC: 42A38
MSC: 42A50
MSC: 42C40
MSC: 94A12
MSC: 94A20
idZBL: Zbl 0931.42025
idMR: MR1828548
Date available: 2009-01-30T09:04:24Z
Last updated: 2013-10-22
Stable URL:
Reference: [1] H. Boche: Konvergenzverhalten der konjugierten Shannonschen Abtastreihe.accepted in Acta Mathematica et Informatica Universitatis Ostraviensis. Zbl 0931.42024
Reference: [2] P. Butzer: HASH(0x3011b98).Personliche Mitteilung, RWTH-Aachen, 1995. Zbl 1002.47500
Reference: [3] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis.Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. MR 0928745
Reference: [4] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions.SIAM Review, March 1992, Vol. 34, No. 1. MR 1156288
Reference: [5] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions.J. Math. Res. Exposition, 3 (1983), p. 185-212. MR 0724869
Reference: [6] D. P. Dryanow: Equiconvergence and equiapproximation for Entire Functions.Constructive Theory of Functions, Varna 91, Sofia 1992, p. 123-136.
Reference: [7] D. P. Dryanow: On the convergence and saturation problem of a sequence of discrete linear Operators of exponential type in $L_p(-\infty, \infty)$ Spaces.Acta Math. Hung. 49 (1-2) (1987), p. 103-127. MR 0869666
Reference: [8] A. Jerri: The Shannon sampling theorem - its varios extensions and applications: a tutorial review.Proc. IEEE 65 (1977), 1565-1596.
Reference: [9] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory.Sringer Texts in Electrical Engineering, Springer Verlag New York, 1991 Zbl 0729.94001, MR 1077829
Reference: [10] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory.Sringer Texts in Electrical Engineering, Springer Verlag New York, 1993. Zbl 0905.94002, MR 1221743
Reference: [11] S. Ries, R. L. Stens: A Localization Principle for the Approximation by Sampling Proc. Intern. Conf. Theory of Approximation of Functions, Izdat. Nauka, Moscow, 1987, pp. 507-509.
Reference: [12] R. L. Stens: Approximation to Duration-Limited Functions by Sampling Sums.Signal Processing 2 (1980), pp. 173-176. MR 0574555, 10.1016/0165-1684(80)90007-9
Reference: [13] R. L. Stens: A Unified Apprvach to Sampling Theorems for Derivatives and Hilbert Transforms.Signal Processing 5 (1983), pp. 139-151. MR 0703507, 10.1016/0165-1684(83)90020-8
Reference: [14] R. L. Stens: Approximation of Functions by Whittaker's Cardinal Series.International Series of Numerical Mathematics, Vol. 71, 1984, pp. 137-149. Zbl 0582.42002, MR 0821793
Reference: [15] R. L. Stens: HASH(0x3028860).Personliche Mitteilung, RWTH-Aachen, 1995. Zbl 0835.94004


Files Size Format View
ActaOstrav_05-1997-1_3.pdf 1.789Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo