Previous |  Up |  Next

Article

Title: Eine axiomatische Charakterisierung der Hilbert-Transformation (German)
Title: An axiomatic characterization of Hilbert transform (English)
Author: Boche, Holger
Language: German
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 8
Issue: 1
Year: 2000
Pages: 11-23
.
Category: math
.
MSC: 42A50
MSC: 42B20
MSC: 44A15
MSC: 93A05
MSC: 93A10
idZBL: Zbl 1028.44002
idMR: MR1800218
.
Date available: 2009-01-30T09:07:46Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120555
.
Reference: [1] P. K. Das: Optical Signal Processing-Fundamentals.Springer-Verlag, Berlin Heidelberg New York, (1991).
Reference: [2] H. Boche: Das Verhalten der Hilbert-Transformation und eine Problemstellung von W. Cauer.Proc. ITG a. IEEE CAS, Berlin (1995), S. 1-6.
Reference: [3] H. Boche: Charakterisierung des numerischen und analytischen Verhaltens der Hilbert-Transformation.Kleinheubacher Berichte 39, (1996), S. 1-12, Proc. International Union of Radio Science
Reference: [4] H. Boche: Untersuchungen zum Verhalten des Hardy-Littlewood Maximaloperators und des Poissonschen Integrals für VMO-Funktionen.accepted in Illinois Journal of Mathematics
Reference: [5] H. Boche: Verhalten der Cauchy-Transformation und der Hilbert-Transformation für auf dem Einheitskreis stetige Funktionen.accepted in Archives of Mathematics Zbl 0970.30023
Reference: [6] H. Boche: Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen.accepted in Bulletin of The Belgian Mathematical Society Simon Stevin Zbl 0934.30028, MR 1721752
Reference: [7] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis.Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. MR 0928745
Reference: [8] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions.SIAM Review, March 1992, Vol. 34, No. 1. MR 1156288
Reference: [9] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions.J. Math. Res. Exposition, 3 (1983), p. 185-212. MR 0724869
Reference: [10] J. Garcia-Cuerva J. Rubio De Francia: Weighted norm Inequalities and related topics.North-Holland Mathematics Studies, New York, 1986. MR 0807149
Reference: [11] J. B. Garnett: Bounded Analytic Functions.Pure and applied Mathematics Bd. 96, Academic Press, New York, 1981. Zbl 0469.30024, MR 0628971
Reference: [12] J. W. Goodman: Introduction to Fourier Optics.McGraw-Hill, New York, (1988).
Reference: [13] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory.Springer Texts in Electrical Engineering, Springer Verlag New York, 1991. Zbl 0729.94001, MR 1077829
Reference: [14] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory.Springer Texts in Electrical Engineering, Springer Verlag New York, 1993. Zbl 0905.94002, MR 1221743
Reference: [15] W. Marten, W. Mathis: Theory of Power in Electrical Systems and Networks and Decomposition of Hilbert Transforms.Proc of the intern. Symp. MTNS' 93, Vol II, Akademie Verlag, Berlin, (1994), p. 781-784. Zbl 0812.94026
Reference: [16] W. Mathis: Analysis of Power in Nonlinear Electrical Circuits.Intern J. on Theoretical Electrotechnics, No. 5, (1994), p. 53-60.
Reference: [17] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Priceton University Press, Princton New Jersey, (1970). Zbl 0207.13501, MR 0290095
Reference: [18] A. Zygmund: Trigonometric Series I, II.Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990.
.

Files

Files Size Format View
ActaOstrav_08-2000-1_2.pdf 1.614Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo