Previous |  Up |  Next

Article

Title: On the generalized nonlinear quasivariational inclusions (English)
Author: Liu, Z.
Author: Debnath, L.
Author: Kang, S. M.
Author: Ume, J. S.
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 11
Issue: 1
Year: 2003
Pages: 81-90
.
Category: math
.
MSC: 47J20
MSC: 49J40
idZBL: Zbl 05131109
idMR: MR2037311
.
Date available: 2009-01-30T09:10:37Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120595
.
Reference: [1] R. Ahmad, Q. H. Ahsari: An iterative algorithm for generalized nonlinear varitational inclusions.Appl. Math. Lett. 13, 2000, 23-26, MR 1760258, 10.1016/S0893-9659(00)00028-8
Reference: [2] M. R. Bai Y. Y. Tang, Y. P. Liu: Generalized implicit quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings.Appl. Math. Lett. 12, 1999, 69-76. MR 1750141, 10.1016/S0893-9659(99)00059-2
Reference: [3] X. P. Ding: Perturhed proximal point algorithms for generalized quasivariational inclusions.J. Math. Anal. Appl. 210, 1997, 88-101. MR 1449511, 10.1006/jmaa.1997.5370
Reference: [4] N. J. Huang: Generalized nonlinear variational inclusions with noncompact valued mappings.Appl. Math. Lett. 9, 1996, 25-29. Zbl 0851.49009, MR 1385994, 10.1016/0893-9659(96)00026-2
Reference: [5] N. J. Huang: On the generalized implicit quasivariational inequalities.J. Math. Anal. Appl. 216, 1997, 197-210. Zbl 0886.49007, MR 1487260, 10.1006/jmaa.1997.5671
Reference: [6] S. B. Nadler, Jr.: Multi-valued contraction mappings.Pacific J. Math. 30, 1969, 475-488. Zbl 0187.45002, MR 0254828, 10.2140/pjm.1969.30.475
Reference: [7] M. A. Noor: Generalized multivalued quasi-variationat inequalities.Computers Math. Applic. 31, 1996, 1-13. MR 1418699, 10.1016/0898-1221(96)00071-5
Reference: [8] M. A. Noor: Generalized multivalued quasi-variational inequalities (II).Computers Math. Applic. 35, 1998, 63-78. Zbl 0903.49010, MR 1612265, 10.1016/S0898-1221(98)00005-4
Reference: [9] A. H. Siddiqi, Q. H. Ansari: Strongly nonlinear quasivariational inequalities.J. Math. Anal. Appl. 149, 1990, 444-450. Zbl 0712.49009, MR 1057686, 10.1016/0022-247X(90)90054-J
Reference: [10] A. H. Siddiqi, Q. H. Ansari: General strongly nonlinear variational inequalities.J. Math. Anal. Appl. 166, 1992, 386-392. Zbl 0770.49006, MR 1160934, 10.1016/0022-247X(92)90305-W
Reference: [11] R. U. Verma: On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators.J. Math. Anal. Appl. 213, 1997, 387-392. Zbl 0902.49009, MR 1469383, 10.1006/jmaa.1997.5556
Reference: [12] R. U. Verma: Generated variational inequalities involving multivalued relaxed monotone operators.Appl. Math. Lett. 10, 1997, 107-109. MR 1458162, 10.1016/S0893-9659(97)00068-2
Reference: [13] R. U. Verma: Generalized variational inequalities and associated nonlinear equations.Czechoslovak Math. J. 48 (123), 1998, 413-418. Zbl 0953.49011, MR 1637906, 10.1023/A:1022467525714
Reference: [14] R. U. Verma: The solvability of a class of generalized nonlinear variational inequalities based on an iterative algorithm.Appl. Math. Lett. 12, 1999, 51-53. Zbl 0937.49002, MR 1750597, 10.1016/S0893-9659(99)00033-6
Reference: [15] J. C. Yao: Applications of variational inequalities to nonlinear analysis.Appl. Math. Lett. 4, 1991, 89-92. Zbl 0734.49003, MR 1117778, 10.1016/0893-9659(91)90062-Z
Reference: [16] J. H. Zhang: General strongly nonlinear variational inequalities for multifunction.Appl. Math. Lett. 8, 1995, 75-80. MR 1356810, 10.1016/0893-9659(95)00033-M
.

Files

Files Size Format View
ActaOstrav_11-2003-1_6.pdf 971.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo