Previous |  Up |  Next

Article

Title: An application of semi-infinite linear programming: approximation of a continuous function by a polynomial (English)
Author: Bartl, David
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 12
Issue: 1
Year: 2004
Pages: 3-11
.
Category: math
.
MSC: 41A50
MSC: 65K05
MSC: 90C05
MSC: 90C34
MSC: 90C90
idZBL: Zbl 1235.90166
idMR: MR2214667
.
Date available: 2009-01-30T09:10:50Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120598
.
Reference: [1] Duffin R. J.: Infinite Programs.In Linear Inequalities and Related Systems. Ed. H. W. KUHN, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 157-170. (Annals of Mathematics Studies; no. 38.) Zbl 0072.37603, MR 0087573
Reference: [2] HAAR A.: Über lineare Ungleichungen.Acta Sci. Math., 1924, vol. 2, pp. 1-14.
Reference: [3] FAN K.: On Systems of Linear Inequalities.In Linear Inequalities and Related Systems. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 99-156. (Annals of Mathematics Studies; no. 38.) Zbl 0072.37602, MR 0087901
Reference: [4] Fan K., Glicksberg I., Hoffman A. J.: Systems of Inequalities Involving Convex Functions.Proceedings of the American Mathematical Society, June 1957, vol. 8, pp. 617-622. Zbl 0079.02002, MR 0087574
Reference: [5] Farkas J.: Theorie der einfachen Ungleichungen.Journal für die reine und angewandte Mathematik, 1902, vol. 124, pp. 1-27.
Reference: [6] Grygarová L.: Úvod do lineárního programování.[An Introduction to Linear Programming, in Czech.] Praha: SPN, 1975.
Reference: [7] Craven B. D., Koliha J. J.: Generalizations of Farkas' Theorem.SIAM Journal on Mathematical Analysis, November 1977, vol. 8, no. 6, pp. 983-997. Zbl 0408.52006, MR 0471302, 10.1137/0508076
Reference: [8] Lukeš J.: Zápisky z funkcionální analýzy.[Manuscripts on Functional Analysis, in Czech]. 1. vydání. [1st edidion.] Praha: Karolinum, 1998. 2. vydání. [2nd edidion.] Praha: Karolinum, 2002.
Reference: [9] Prékopa A.: On the Development of Optimization Theory.American Mathematical Monthly, August-September 1980, vol. 87, pp. 527-542. MR 0600911, 10.2307/2321417
Reference: [10] Weyl H.: Elementare Theorie der konvexen Polyeder.Commentarii Mathematici Helvetici, 1935, vol. 7, pp. 290-306. English translation: The elementary theory of convex polyhedra. In Contributions to the Theory of Games. Volume I. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1950, pp. 3-18. (Annals of Mathematics Studies; no. 24.) Zbl 0011.41104
Reference: [11] : Problem no. A.318.KöMaL, April 2003, vol. 53, no. 4, p. 255.
.

Files

Files Size Format View
ActaOstrav_12-2004-1_1.pdf 772.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo