Previous |  Up |  Next

Article

Title: Efficient trust region method for nonlinear least squares (English)
Author: Lukšan, Ladislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 2
Year: 1996
Pages: 105-120
.
Category: math
.
MSC: 65K05
MSC: 90C20
MSC: 90C30
idZBL: Zbl 0882.65052
idMR: MR1385857
.
Date available: 2009-09-24T19:01:14Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124177
.
Reference: [1] M. Al-Baali R. Fletcher: Variational methods for nonlinear least squares.J. Optim. Theory Appl. 36 (1985), 405-421.
Reference: [2] J. E. Dennis D. M. Gay R. E. Welsch: An adaptive nonlinear least-squares algorithm.ACM Trans. Math. Software 7 (1981), 348-368.
Reference: [3] J. E. Dennis H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Values.Research Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
Reference: [4] R. Fletcher: A Modified Marquardt Subroutine for Nonlinear Least Squares.Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971.
Reference: [5] R. Fletcher C. Xu: Hybrid methods for nonlinear least squares.IMA J. Numer. Anal. 7 (1987), 371-389. Zbl 0648.65051, MR 0968531
Reference: [6] P. E. Gill W. Murray: Newton type methods for unconstrained and linearly constrained optimization.Math. Programming 7 (1974), 311-350. MR 0356503
Reference: [7] M. D. Hebden: An Algorithm for Minimization Using Exact Second Derivatives.Research Report No.TP515, Theoretical Physics Division, A.E.R.E. Harwell 1973.
Reference: [8] K. Levenberg: A method for the solution of certain nonlinear problems in least squares.Quart. Appl. Math. 2 (1944), 164-168. MR 0010666
Reference: [9] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization.Kybernetika 26 (1990), 415-431. MR 1079679
Reference: [10] D. W. Marquardt: An algorithm for least squares estimation of non-linear parameters.SIAM J. Appl. Math. 11 (1963), 431-441. MR 0153071
Reference: [11] J. Militký: Mathematical Models Building. VI.Mineo, Technical House, Ostrava 1989.
Reference: [12] J. Militký O. Šenkýř L. Rudišar: Comparison of statistical software for nonlinear regression on IBM PC.In: COMPSTAT 90, Short communications, 1990, pp. 49-50.
Reference: [13] J. J. Moré: The Levenberg-Marquardt algorithm. Implementation and theory.In: Numerical Analysis (G. A. Watson ed.), Springer Verlag, Berlin 1978. MR 0483445
Reference: [14] J. J. Moré B. S. Garbow K. E. Hillström: Testing unconstrained optimization software.ACM Trans. Math. Software 7 (1981) 17-41. MR 0607350
Reference: [15] J. J. Moré D. C. Sorensen: Computing a trust region step.SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. MR 0723110
Reference: [16] M. J. D. Powell: A new algorithm for unconstrained optimization.In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London 1970. Zbl 0228.90043, MR 0272162
Reference: [17] R. B. Schnabel E. Eskow: A new Choleski factorization.SIAM J. Sci. Statist. Comput. 11 (1990), 1136-1158. MR 1068501
Reference: [18] G. A. Shultz R. B. Schnabel R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties.SIAM J. Numer. Anal. 22 (1985) 47-67. MR 0772882
.

Files

Files Size Format View
Kybernetika_32-1996-2_1.pdf 1.273Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo