[1] D. Anbar: 
On optimal estimation methods using stochastic approximation procedures. Ann. Statist. 1 (1973), 1175-1184. 
MR 0351001 | 
Zbl 0277.62064 
[2] D. L. Burkholder: 
On class of stochastic approximation procedures. Ann. Math. Statist. 27 (1956), 1044-1059. 
MR 0085653 
[4] V. Dupač: 
A dynamic stochastic approximation. Ann. Math. Statist. 36 (1965), 1695 - 1702. 
MR 0193724 
[5] V. Dupač: 
O Kiefer-Wolfowitzově aproximační metodě. Časopis Pěst. Matem. 82 (1957), 47-75. 
MR 0089556 
[6] V. Dupač: On the dynamic stochastic approximation. Banach Center Publications, vol. 6, 109-110. Warszawa 1980.
[7] V. Dupač F. Král: 
Robbins-Monro procedure with both variables subject to experimental error. Ann. Math. Statist. 43 (1972), 1089-1095. 
MR 0336935 
[8] V. Fabian: 
On asymptotic normality in stochastic approximation. Ann. Math. Statist. 39 (1968), 1327-1332. 
MR 0231429 | 
Zbl 0176.48402 
[9] V. Fabian: 
Stochastic approximation of minima with improved asymptotic speed. Ann. Math. Statist. 38 (1967), 191-200. 
MR 0207136 | 
Zbl 0147.18003 
[10] B. Ф. Ганошкин T. П. Красулина: 
О законе повторного логарифма в процессах стохастической аппроксимации. Teop. вepoятн. и ee примен. 19 (1974), 879 - 886. 
Zbl 1235.49003 
[11] L. Györfi: 
Stochastic approximation from ergodic sample for linear regression. Z. Wahrscheinlich. Verw. Geb. 54 (1980), 47-55. 
MR 0595479 
[12] D. L. Hanson R. P. Russo: A new stochastic approximation procedure using quantile curves. Z. Wahrscheinlich. Verw. Geb. (v tisku).
[13] K. L. Chung: 
On a stochastic approximation method. Ann. Math. Statist. 25 (1954), 463 - 483. 
MR 0064365 | 
Zbl 0059.13203 
[14] J. Komlós P. Révész: 
A modification of the Robbins-Monro process. Stud. Sci. Math. Hung. 8 (1973), 329-340. 
MR 0351004 
[15] T. П. Красулина: 
Метод стохастической аппроксимации для определения найбольшего собственного числа математического ожидания случайных матриц. Aвтоматика и телемеханика 1970, 2, 50- 56. 
Zbl 1170.92319 
[16] H. J. Kushner D. S. Clark: 
Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer-Verlag, New York 1978. 
MR 0499560 
[17] H. J. Kushner E. Sanvicente: 
Penalty function methods for constrained stochastic approximation. J. Math. Anal. and Applications 46 (1974), 499-512. 
MR 0343506 
[18] T. L. Lai H. Robbins: 
Adaptive design and stochastic approximation. Ann. Statist. 7 (1979), 1196-1221. 
MR 0550144 
[19] L. Ljung: 
Analysis of recursive stochastic algorithms. IEEE Trans. Autom. Control AC-22 (1977), 551-575. 
MR 0465458 | 
Zbl 0362.93031 
[20] P. Major P. Révész: 
A limit theorem for the Robbins-Monro approximation. Z. Wahrscheinlich. Verw. Geb. 27 (1973), 79-86. 
MR 0359213 
[22] M. Б. Hевельсон P. З. Хасьминский: 
Стохастическая аппроксимация и рекуррентное оценивание. Hayкa, Mocквa. 1972. 
Zbl 1049.82501 
[24] P. Révész: 
How to apply the method of stochastic approximation in the nonparametric estimation of a regression function. Math. Operationsforsch. Statist., Ser. Statistics 8 (1977), 119-126. 
MR 0501557 
[25] P. Révész: 
Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I. Stud. Sci. Math. Hung. 5 (1973), 391-398. 
MR 0373198 
[26] H. Robbins S. Monro: 
A stochastic approximation method. Ann. Math. Statist. 22 (1951), 400-407. 
MR 0042668 
[27] H. Robbins D. Siegmund: 
A convergence theorem for non negative almost supermartin-gales and some applications. In: Optimizing Methods in Statistics (J. S. Rustagi, ed.). Academic Press, New York 1971, 233-257. 
MR 0343355 
[28] W. Stout: 
A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahrscheinlich. verw. Geb. 15 (1970), 279-290. 
MR 0293701 | 
Zbl 0209.49004 
[29] J. H. Venter: 
An extension of the Robbins-Monro procedure. Ann. Math. Statist. 38 (1967), 181-190. 
MR 0205396 | 
Zbl 0158.36901