Previous |  Up |  Next

Article

Title: Robust Kalman filter and its application in time series analysis (English)
Author: Cipra, Tomáš
Author: Romera, Rosario
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 6
Year: 1991
Pages: 481-494
.
Category: math
.
MSC: 62F35
MSC: 62M20
MSC: 93E11
idZBL: Zbl 0745.62090
idMR: MR1150938
.
Date available: 2009-09-24T18:28:22Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124292
.
Reference: [1] K. K. Aase: Recursive estimation in non-linear time series models of autoregressive type.J. Roy. Statist. Soc. Ser. B 45 (1983), 228-237. Zbl 0524.62085, MR 0721750
Reference: [2] B. D. O. Anderson, J. B. Moore: Optimal Filtering.Prentice-Hall, Englewood Cliffs, New Jersey 1979. Zbl 0688.93058
Reference: [3] A. E. Bryson, J. C. Ho: Applied Optimal Control.J. Wiley, New York 1975. MR 0446628
Reference: [4] K. Campbell: Recursive computation of M-estimates for the parameters of a finite autoregressive process.Ann. Statist. 10 (1982), 442-453. Zbl 0492.62076, MR 0653519
Reference: [5] J. E. Englund: Multivariate Recursive M-estimators of Location and Scatter for Dependent Sequences.Research Report, University of Lund and Lund Institute of Technology 1988.
Reference: [6] A. A. Ershov, R. S. Liptser: Robust Kalman filter in discrete time.Automat. Remote Control 39 (1978), 359-367. Zbl 0417.93070
Reference: [7] E. J. Hannan: Multiple Time Series.J. Wiley, New York 1970. Zbl 0211.49804, MR 0279952
Reference: [8] P. J. Harrison, C. F. Stevens: Bayesian forecasting.J. Roy. Statist. Soc. Ser. B 38 (1976), 205-247. Zbl 0349.62062, MR 0655429
Reference: [9] U. Holst: Convergence of a recursive stochastic algorithm with m-dependent observations.Scand. J. Statist. 7 (1980), 207-215. Zbl 0455.62065, MR 0605992
Reference: [10] U. Hoist: Convergence of a recursive robust algorithm with strongly regular observations.Stochastic Process. Appl. 16 (1984), 305-320. MR 0723851
Reference: [11] P. J. Huber: Robust Statistics.J. Wiley, New York 1981. Zbl 0536.62025, MR 0606374
Reference: [12] R. D. Martin: Robust estimation for time series autoregressions.In: Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
Reference: [13] C. J. Masreliez: Approximate non-Gaussian filtering with linear state and observation relations.IEEE Trans. Automat. Control AC-20 (1975), 107-110. Zbl 0298.93018
Reference: [14] C. J. Masreliez, R. D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter.IEEE Trans. Automat. Control AC-22 (1977), 361 - 371. Zbl 0354.93054, MR 0453124
Reference: [15] R. J. Meinhold, N. D. Singpurwalla: Robustification of Kalman filter models.J. Amer. Statist. Assoc. 84 (1989), 479-486. MR 1010336
Reference: [16] M. Pantel: Adaptive Verfahren der stochastischen Approximation.Dissertation, Universitiit Essen 1979.
Reference: [17] D. Peňa, J. Guttman: Optimal collapsing of mixture distributions in robust recursive estimation.Comm. Statist. Theory Methods 18 (1989), 817-833. MR 1001623
Reference: [18] B. T. Polyak, Ya. Z. Tsypkin: Adaptive estimation algorithms: convergence, optimality, stability (in Russian).Avtomat. Telemekh. (1979), 3, 71-84. MR 0544876
Reference: [19] B. T. Polyak, Ya. Z. Tsypkin: Optimal methods of estimation of autoregressive parameters under incomplete information (in Russian).Tekh. kibernet. (1983), 1, 118-126. MR 0736269
Reference: [20] H. Robbins, D. Siegmund: A convergence theorem for non negative almost supermartingales and some applications.In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, New York 1971, pp. 233 - 257. Zbl 0286.60025, MR 0343355
Reference: [21] L. D. Servi, Y. C. Ho: Recursive estimation in the presence of uniformly distributed measurement noise.IEEE Trans. Automat. Control AC-26 (1981), 563-565. Zbl 0475.93065, MR 0613583
Reference: [22] N. Stockinger, R. Dutter: Robust Time Series Analysis: A Survey.Supplement to Kybernetika vol. 23 (1987). Zbl 0652.62088, MR 0921397
Reference: [23] Yu. Sh. Verulava: Convergence of a stochastic approximation algorithm for estimating an autoregressive parameter (in Russian).Avtomat. Telemekh. (1981), 7, 115-119. MR 0647669
.

Files

Files Size Format View
Kybernetika_27-1991-6_1.pdf 877.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo