Previous |  Up |  Next

Article

Title: Semistochastic decomposition scheme in mathematical programming and game theory (English)
Author: Chien, Tran Quoc
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 6
Year: 1991
Pages: 535-541
.
Category: math
.
MSC: 49K35
MSC: 90-08
MSC: 90C15
MSC: 90C30
MSC: 91A05
MSC: 93D05
idZBL: Zbl 0749.90075
idMR: MR1150941
.
Date available: 2009-09-24T18:28:50Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124295
.
Reference: [1] G. B. Dantzig, P. Wolfe: The decomposition algorithm for linear programs.Econometrica 29 (1961), 4, 767-778. Zbl 0104.14305, MR 0138506
Reference: [2] J. F. Benders: Partitioning procedures for solving mixed variable programming problems.Numer. Math. 4 (1962), 238-260. MR 0147303
Reference: [3] A. Geoffrion: Generalized Benders decomposition.J. Optim. Theory Appl. 10 (1972), 237-260. Zbl 0229.90024, MR 0327310
Reference: [4] T. J. Van Roy: Cross decomposition for mixed integer programming.Mathematical Programming 25 (1983), 46-63. Zbl 0505.90057, MR 0679253
Reference: [5] I. Kornai, T. Liptak: Planning on two levels.In: Application of Mathematics in Economical Research 4, Moscow 1965. In Russian. MR 0214364
Reference: [6] R. E. Burkard H. W. Hamacher, J. Tind: On general decomposition schemes in mathematical programming.Mathematical Programming Study 24 (1985), 238-252. MR 0821002
Reference: [7] V. Z. Belinskij V. A. Volkonskii S. A. Ivankov A. B. Pomanskii, A. D. Shapiro: Iterative Methods in Game Theory and Mathematical Programming.Nauka, Moscow 1974. In Russian.
Reference: [8] V. V. Fedorov: Maximin Numerical Methods.Nauka, Moscow 1979.
Reference: [9] I. Ekeland, R. Temam: Analyse Convexe et Problemes Variationnels.Dunod, Paris 1974. Zbl 0281.49001, MR 0463993
Reference: [10] G. D. Maistrovskii: Gradient methods for finding saddle points.Econom. i Mat. Metody 12 (1976), 917-929. In Russian. MR 0451122
Reference: [11] E. G. Golstein: Gradient methods for determination of saddle points and modified Lagrangians.In: Proc. of the Workshop ,,Math. Optimierung - Theorie und Anwendungen'' Wartburg/Eisenach 1983.
Reference: [12] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by un- constrained optimization.Math. Programming 5 (1973), 354-373. MR 0371416
Reference: [13] Tran Quoc Chien: Nondifferentiable and quasidifferentiable duality in vector optimization theory.Kybernetika 21 (1985), 4, 298-321. Zbl 0579.90091, MR 0815617
Reference: [14] Tran Quoc Chien: Fenchel-Lagrange duality in vector fractional programming via abstract duality scheme.Kybernetika 22 (1986), 4, 299-319. Zbl 0616.90081, MR 0868023
Reference: [15] Tran Quoc Chien: Perturbation theory of duality in vector optimization via the abstract duality scheme.Kybernetika 23 (1987), 1, 67-81. Zbl 0615.49007, MR 0883908
Reference: [16] Tran Quoc Chien: Vector nonconvex perturbational duality theory via the abstract duality scheme.Essays on Nonlinear Analysis and Optimization Problems. Ha-Noi 1987. Zbl 0652.90092
Reference: [17] B. Gnedenko: The Theory of Probability.Nauka, Moscow 1973.
Reference: [18] N. N. Vorobiev: Elements of Game Theory: Noncooperative Games.Nauka, Moscow 1984.
.

Files

Files Size Format View
Kybernetika_27-1991-6_5.pdf 320.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo