Previous |  Up |  Next


Title: A generalized solution of a nonconvex minimization problem and its stability (English)
Author: Roubíček, Tomáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 22
Issue: 4
Year: 1986
Pages: 289-298
Category: math
MSC: 49B27
MSC: 49J27
MSC: 49K40
MSC: 90C30
MSC: 90C48
idZBL: Zbl 0626.49013
idMR: MR868022
Date available: 2009-09-24T17:54:14Z
Last updated: 2012-06-05
Stable URL:
Reference: [1] W. Alt: Lipschitzian perturbation of infinite optimization problems.In: Mathematical Programming with Data Perturbations II (A. V. Fiacco, ed.), Marcel Dekker, Inc., New York-Basel 1983, pp. 7-22. MR 0702354
Reference: [2] N. Bourbaki: General Topology.Hermann, Paris 1966. Zbl 0301.54002
Reference: [3] Á. Császár: General Topology.Akadémiai Kiadó, Budapest 1978.
Reference: [4] I. Ekeland, R. Teman: Convex Analysis and Variational Problems.North-Holland, Amsterdam 1976.
Reference: [5] L. Gillman, M. Jerison: Rings of Continuous Functions.Second edition. Springer-Verlag, Berlin-Heidelberg-New York 1976. Zbl 0327.46040, MR 0407579
Reference: [6] E. G. Golshtein: Theory of Convex Programming.AMS, Transl. of Math. Monographs, Vol. 36, Providence, R. I. 1972. MR 0359802
Reference: [7] A. D. Ioffe, V. M. Tihomirov: Extension of variational problems.Trudy Moskov. Mat. Obšč. (Trans. Moscow Math. Soc.) 18 (1968), 207-273. MR 0254702
Reference: [8] E. Polak, Y. Y. Wardi: A study of minimizing sequences.SIAM J. Control Optim. 22 (1984), 599-609. Zbl 0553.49017, MR 0747971
Reference: [9] T. Zolezzi: On stability analysis in mathematical programming.Math. Programming Study 21 (1984), 227-242. MR 0751252


Files Size Format View
Kybernetika_22-1986-4_1.pdf 541.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo