Previous |  Up |  Next

Article

Title: On the solution of optimal control problems involving parameters and general boundary conditions (English)
Author: Doležal, Jaroslav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 17
Issue: 1
Year: 1981
Pages: 71-81
.
Category: math
.
MSC: 49C15
MSC: 49K15
MSC: 90C52
idZBL: Zbl 0454.49017
idMR: MR629350
.
Date available: 2009-09-24T17:18:59Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124375
.
Reference: [1] V. A. Trojckij: Variational problems of optimization of control processes.Prikladnaja matematika i mechanika 26 (1962), 1, 29-38. In Russian. MR 0143677
Reference: [2] L. T. Fan C. S. Wang: The Discrete Maximum Principle.Wiley, New York 1966. MR 0195614
Reference: [3] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with General Boundary Conditions.Aero-Astronautics Report No. 142, Rice University, Houston 1978.
Reference: [4] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with Nondifferential Constraints and General Boundary Conditions.Aero-Astronautics Report No. 143, Rice University, Houston 1978.
Reference: [5] S. Gonzales A. Miele: Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions.J. Optimization Theory and Appl. 26 (1978), 3, 395-425. MR 0524638
Reference: [6] J. Fidler J. Doležal: On the Solution of Optimal Control Problems with General Boundary Conditions.Research Report No. 956, Institute of Information Theory and Automation, Prague 1979. In Czech.
Reference: [7] J. Doležal P. Černý: The application of optimal control methods to the determination of multifunctional catalysts.23rd CHISA Conference, Mariánské Lázně 1976. See also: Automatizace 21 (1978), 1,3-8. In Czech.
Reference: [8] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems.J. Optimization Theory Appl. 5, (1970), 5, 382-399. MR 0266441
Reference: [9] J. Doležal: Modified quasilinearization method for the solution of implicite nonlinear two-point boundary-value problems for difference systems.The 5th Symposium on Algorithms "ALGORITHMS' 79", Vysoké Tatry 1979, 259-271. In Czech.
Reference: [10] J. Doležal J. Fidler: On the numerical solution of implicite two-point boundary-value problems.Kybernetika 15 (1979), 3, 222-230.
Reference: [11] M. R. Hestenes: Calculus of Variations and Optimal Control Theory.Wiley, New York 1966. Zbl 0173.35703, MR 0203540
Reference: [12] A. E. Bryson Y. C. Ho: Applied Optimal Control.Ginn and Company, Waltham, Massachusetts 1969.
Reference: [13] A. Miele B. P. Mohanty A. K. Wu: Conversion of Optimal Control Problems with Free Initial State Into Optimal Control Problems with Fixed Initial State.Aero-Astronautics Report No. 130, Rice University, Houston 1976.
Reference: [14] J. Doležal: Parameter optimization for two-player zero-sum differential games.Trans. of the ASME, Ser. G., J. Dynamic Systems, Measurement and Control 101 (1979), 4, 345-349. MR 0553273
Reference: [15] J. Doležal: Parameter optimization in nonzero-sum differential games.Kybernetika 16 (1980), 1, 54-70. MR 0575417
Reference: [16] N. U. Ahmed N. D. Georganas: On optimal parameter selection.IEEE Trans. Automatic Control AC-18 (1973), 3, 313-314. MR 0448207
Reference: [17] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods.American Elsevier, New York 1972. MR 0323119
Reference: [18] J. Doležal: A gradient-type algorithm for the numerical solution of two-player zero-sum differential games.Kybernetika 14 (1978), 6, 429-446. MR 0529195
Reference: [19] P. Černý: Digital Simulation Program for the Solution of Two-Point Boundary-Value Problems.Research Report No. 639, Institute of Information Theory and Automation, Prague 1975. In Czech.
.

Files

Files Size Format View
Kybernetika_17-1981-1_6.pdf 754.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo