Previous |  Up |  Next

Article

Title: Some stationary source and joint source-channel coding theorems with a fidelity criterion (English)
Author: Šujan, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 22
Issue: 6
Year: 1986
Pages: 461-470
.
Category: math
.
MSC: 94A15
MSC: 94A29
idMR: MR874715
.
Date available: 2009-09-24T17:56:29Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124452
.
Reference: [1] T. Berger: Rate Distortion Theory.Prentice Hall, Englewood Cliffs 1971. MR 0408988
Reference: [2] R. M. Gray: Sliding-block source coding.IEEE Trans. Inform. Theory 21 (1975), 357-368. Zbl 0308.94015, MR 0376230
Reference: [3] R. M. Gray, D. S. Ornstein: Sliding-block joint source/noisy-channel coding theorems.IEEE Trans. Inform. Theory 22 (1976), 682-690. Zbl 0348.94019, MR 0530088
Reference: [4] R. M. Gray D. S. Ornstein, and R. L. Dobrushin: Block synchronization, sliding-block coding, invulnerable sources, and zero-error codes for discrete noisy channels.Ann. Probab. 5 (1980), 638-674. MR 0577308
Reference: [5] R. M. Gray D. L. Neuhoff, and D. S. Ornstein: Non-block source coding with a fidelity criterion.Ann. Probab. 3 (1975), 478-491. MR 0376239
Reference: [6] Š. Šujan: Sinai's theorem and entropy compression.Problems Control Inform. Theory 12 (1983), 419 - 428. Zbl 0559.94007, MR 0733060
Reference: [7] Š. Šujan: Ergodic theory, entropy, and coding problems of information theory.Kybernetika 19 (1983), supplement, 58 pp. MR 0902063
Reference: [8] J. C. Kieffer: A simple development of the Thouvenot relative isomorphism theory.Ann. Probab. 12 (1984), 204-211. Zbl 0551.28023, MR 0723739
Reference: [9] R. M. Gray D. L. Neuhoff, and P. C. Shields: A generalization of Ornstein's $\overline{d}$-distance with applications to information theory.Ann. Probab. 3 (1975), 315-328. MR 0368127
Reference: [10] D. S. Ornstein: Ergodic Theory, Randomness, and Dynamical Systems.Yale Univ. Press, New Haven, Conn. 1974. Zbl 0296.28016, MR 0447525
Reference: [11] P. C. Shields: The Theory of Bernoulli Shifts.Univ. of Chicago Press, Chicago 1973. Zbl 0308.28011, MR 0442198
Reference: [12] J. C. Kieffer: A method for proving multiterminal source coding theorems.IEEE Trans. Inform. Theory 27 (1981), 565-570. Zbl 0473.94008, MR 0650689
Reference: [13] J. C. Kieffer: On the transmission of Bernoulli sources over stationary channels.Ann. Probab. 5 (1980), 942- 961. Zbl 0452.94012, MR 0586778
Reference: [14] R. M. Gray D. L. Neuhoff, and J. K. Omura: Process definitions of distortion-rate functions and source coding theorem.IEEE Trans. Inform. Theory 21 (1975), 524-532. MR 0449878
Reference: [15] D. L. Neuhoff R. M. Gray, and L. D. Davisson: Fixed rate universal block source coding with a fidelity criterion.IEEE Trans. Inform. Theory 21 (1975), 511 - 523. MR 0411825
Reference: [16] R. M. Gray, D. S. Ornstein: Block coding for discrete stationary $\overline{d}$-continuous noisy channels.IEEE Trans. Inform. Theory 25 (1979), 292-306. MR 0528007
Reference: [17] R. G. Gallager: Information Theory and Reliable Communication.J. Wiley, New York-London-Sydney-Toronto 1968. Zbl 0198.52201
Reference: [18] J. C. Kieffer: Stationary coding over stationary channels.Z. Wahrsch. verw. Gebiete 56 (1981), 113-126. Zbl 0444.94007, MR 0612163
.

Files

Files Size Format View
Kybernetika_22-1986-6_2.pdf 523.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo