Previous |  Up |  Next

Article

Title: Regression quantiles and trimmed least squares estimator under a general design (English)
Author: Jurečková, Jana
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 20
Issue: 5
Year: 1984
Pages: 345-357
.
Category: math
.
MSC: 62E20
MSC: 62F12
MSC: 62F35
MSC: 62J05
idZBL: Zbl 0561.62027
idMR: MR776325
.
Date available: 2009-09-24T17:42:29Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124484
.
Reference: [1] R. R. Bahadur: A note on quantiles in large samples.Ann. Math. Statist. 37 (1966), 577-580. Zbl 0147.18805, MR 0189095
Reference: [2] G. Bassett, R. Koenker: An empirical quantile function for linear models with iid errors.J. Amer. Statist. Assoc. 77 (1982), 407-415. Zbl 0493.62047, MR 0664682
Reference: [3] G. Bassett, R. Koenker: Convergence of an empirical distribution function for the linear model.Submitted (1983).
Reference: [4] P. J. Bickel: On some analogues to linear combinations of order statistics in the linear model.Ann. Statist. / (1973), 597-616. Zbl 0265.62021, MR 0314206
Reference: [5] P. Billingsley: Convergence of Probability Measures.J. Wiley, New York, 1968. Zbl 0172.21201, MR 0233396
Reference: [6] P. J. Huber: Robust Statistics.J. Wiley, New York 1981. Zbl 0536.62025, MR 0606374
Reference: [7] L. A. Jaeckel: Estimating regression coefficients by minimizing the dispersion of the residuals.Ann. Math. Statist. 43 (1972), 1449-1458. Zbl 0277.62049, MR 0348930
Reference: [8] J. Jurečková: Nonparametric estimate of regression coefficients.Ann. Math. Statist. 42 (1971), 1328-1338. MR 0295487
Reference: [9] J. Jurečková: Asymptotic independence of rank test statistic for testing symmetry on regression.Sankhya A 33 (1971), 1-18. MR 0321234
Reference: [10] J. Jurečková: Asymptotic relations of M-estimates and R-estimates in linear regression model.Ann. Statist. 5 (1977), 464-472. MR 0433698
Reference: [11] J. Jurečková: Asymptotic representation of M-estimators of location.Math. Operations-forsch. Statist., Ser. Statistics 11 (1980), 61-73. MR 0606159
Reference: [12] J. Jurečková: Robust estimators of location and regression parameters and their second order asymptotic relations.In: Trans. 9th Prague Conf. on Inform. Theory, Statist. Dec. Functions and Random Processes, pp. 19-32. Academia, Praha 1983. MR 0757722
Reference: [13] J. Jurečková: Winsorized least-squares estimator and its M-estimator counterpart.Contributions to Statistics: Essays in Honour of Norman L. Johnson (ed. P. K. Sen), pp. 237- 245. North-Holland, Amsterdam 1983. MR 0730464
Reference: [14] J. Jurečková, P. K. Sen: On adaptive scale-equivariant M-estimators in linear models.Statistics and Decisions 2, (1984), to appear. MR 0785200
Reference: [15] R. Koenker: A note on L-estmates for linear models.Preprint. Bell Laboratories, Murray- Hill (1983). MR 0782652
Reference: [16] R. Koenker, G. Bassett: Regression quantiles.Econometrica 46 (1978), 33 - 50. Zbl 0373.62038, MR 0474644
Reference: [17] H. L. Koul: Asymptotic behavior of a class of confidence regions based on ranks in regression.Ann. Math. Statist. 42 (1971), 466-476. Zbl 0215.54204, MR 0288896
Reference: [18] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles.Submitted (1983). MR 0786311
Reference: [19] D. Ruppert, R. J. Carroll: Trimmed least-squares estimation in the linear model.J. Amer. Statist. Assoc. 75 (1980), 828-838. Zbl 0459.62055, MR 0600964
.

Files

Files Size Format View
Kybernetika_20-1984-5_1.pdf 628.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo