Previous |  Up |  Next

Article

Title: Refinements of inductive inference by Popperian and reliable machines (English)
Author: Case, John
Author: Jain, Sanjay
Author: Ngo Manguelle, Suzanne
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 1
Year: 1994
Pages: 23-52
.
Category: math
.
MSC: 03D20
MSC: 68Q05
MSC: 68Q60
MSC: 68T05
MSC: 68T15
MSC: 68T27
idZBL: Zbl 0819.68052
idMR: MR1267470
.
Date available: 2009-09-24T18:44:41Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124505
.
Reference: [1] J. M. Barzdin: Prognostication of automata and functions.Inform. Process. 1 (1971), 81-84. MR 0406777
Reference: [2] J. M. Barzdin: Two theorems on the limiting synthesis of functions.In: Theory of Algorithms and Programs, Latvian State University, Riga, 210 (1974), pp. 82-88. In Russian. MR 0505358
Reference: [3] J. M. Barzdin, R. Freivalds: On the prediction of general recursive functions.Soviet Math. Dokl. 13 (1972), 1224-1228. MR 0347570
Reference: [4] J. M. Barzdin, R. Freivalds: Prediction and limiting synthesis of recursively enumerable classes of functions.Latvijas Valsts Univ. Zimatm. Raksti 210 (1974), 101-111. MR 0505361
Reference: [5] L. Blum, M. Blum: Toward a mathematical theory of inductive inference.Inform. and Control 28 (1975), 125-155. Zbl 0375.02028, MR 0395312
Reference: [6] M. Blum: A machine independent theory of the complexity of recursive functions.J. Assoc. Comput. Mach. 14 (1967), 322-336. Zbl 0155.01503, MR 0235912
Reference: [7] J. Case: Periodicity in generations of automata.Math. Systems Theory 8 (1974), 15-32. Zbl 0295.02019, MR 0389551
Reference: [8] J. Case K. J. Chen, S. Jain: Strong separation of learning classes.J. Exper. and Theoret. Artif. Intell. 4 (1992), 281-293. MR 1234664
Reference: [9] J. Case K. J. Chen, S. Jain: Strong separation of learning classes.In: Proc. Third International Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany, Oct. 1992. MR 1234664
Reference: [10] J. Case, S. Ngo Manguelle: Refinements of inductive inference by Popperian machines.Technical Report 152, SUNY/Buffalo 1979.
Reference: [11] J. Case, C. Smith: Comparison of identification criteria for machine inductive inference.Theoret. Comput. Sci. 25 (1983), 193-220. Zbl 0524.03025, MR 0693078
Reference: [12] R. Daley: On the error correcting power of pluralism in BC-type inductive inference.Theoret. Comput. Sci. 24 (1983), 95-104. Zbl 0582.68020, MR 0707650
Reference: [13] R. P. Daley: Inductive inference hierarchies: Probabilistic vs pluralistic.Lecture Notes in Computer Science 215 (1986), 73-82. Zbl 0648.68089
Reference: [14] M. Fulk: A Study of Inductive Inference machines.PhD thesis, SUNY at Buffalo 1985.
Reference: [15] M. Fulk: Saving the phenomenon: Requirements that inductive machines not contradict known data.Inform. and Comput. 79 (1988), 193-209. MR 0971130
Reference: [16] E. M. Gold: Language identification in the limit.Inform. and Control 10 (1067), 447-474. Zbl 0259.68032
Reference: [17] M. Machtey, P. Young: An Introduction to the General Theory of Algorithms.North Holland, New York 1978. Zbl 0376.68027, MR 0483344
Reference: [18] Y. Marcoux: Composition is almost as good as s-1-1.In: Proc. Structure in Complexity Theory--Fourth Annual Conference. IEEE Computer Society Press, 1989.
Reference: [19] E. Minicozzi: Some natural properties of strong identification in inductive inference.Theoret. Comput. Sci. (1976), 345-360. Zbl 0373.68051, MR 0505370
Reference: [20] D. Osherson M. Stob, S. Weinstein: Systems that Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists.MIT Press, Cambridge, Mass. 1986.
Reference: [21] L. Pitt, C. Smith: Probability and plurality for aggregations of learning machines.Inform. and Comput. 77 (1988), 77-92. Zbl 0646.68096, MR 0937376
Reference: [22] K. Podnieks: Comparing various concepts of function prediction. Part I.Theory of Algorithms and Programs 210 (1974), 68-81.
Reference: [23] K. Popper: The Logic of Scientific Discovery.Harper Torch Books, New York 1968.
Reference: [24] G. Riccardi: The Independence of Control Structures in Abstract Programming Systems.PhD thesis, SUNY at Buffalo 1980. MR 0624874
Reference: [25] G. Riccardi: The independence of control structures in abstract programming systems.J. Comput. System Sci. 22 (1981), 107-143. Zbl 0467.68009, MR 0624874
Reference: [26] H. Rogers: Gödel numberings of partial recursive functions.J. Symbolic Logic 23 (1958), 331-341. MR 0103821
Reference: [27] H. Rogers: Theory of Recursive Functions and Effective Computability.McGraw Hill, New York 1967. Reprinted, MIT Press 1987. Zbl 0183.01401, MR 0886890
Reference: [28] J. Royer: A Connotational Theory of Program Structure.(Lecture Notes in Computer Science 273.) Springer-Verlag, Berlin 1987. Zbl 0625.68018, MR 0909897
Reference: [29] C. Smith: The power of pluralism for automatic program synthesis.J. Assoc. Math. Comput. Mach. 29 (1982), 1144-1165. Zbl 0496.68065, MR 0674261
Reference: [30] T. Zeugmann: A-posteriori characterizations in inductive inference of recursive functions.Electron. Informationsverarb. u. Kybernetik 19 (1983), 559-594. Zbl 0542.03020, MR 0746510
.

Files

Files Size Format View
Kybernetika_30-1994-1_2.pdf 1.323Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo