Previous |  Up |  Next

Article

Title: Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability (English)
Author: Geerts, Ton
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 29
Issue: 5
Year: 1993
Pages: 431-438
.
Category: math
.
MSC: 49K30
MSC: 49N10
MSC: 93C15
MSC: 93C35
MSC: 93D99
idZBL: Zbl 0807.93033
idMR: MR1264876
.
Date available: 2009-09-24T18:42:26Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124543
.
Reference: [1] D. J. Bender, A. J. Laub: The linear-quadratic optimal regulator for descriptor systems.IEEE Trans. Automat. Control AC-32 (1987), 672-688. Zbl 0624.93030, MR 0896834
Reference: [2] D. Cobb: Descriptor variable systems and optimal state regulation.IEEE Trans. Automat. Control AC-28 (19S3), 601-611. MR 0712957
Reference: [3] A. H. W. Geerts, M. L. J. Hautus: The output-stabilizable subspace and linear optimal control.In: Robust Control of Linear Systems and Nonlinear Control, Progress in Systems and Control Theory, Vol. 4, Birkhauser, Boston 1990, pp. 113-120. Zbl 0735.93061, MR 1115381
Reference: [4] T. Geerts: A necessary and sufficient condition for solvability of the linear-quadratic control problem without stability.Systems Control Lett. 11 (1988), 47-51. Zbl 0644.49018, MR 0949889
Reference: [5] T. Geerts: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost.Linear Algebra Appl. 116 (1989), 135-181. Zbl 0674.49001, MR 0989722
Reference: [6] T. Geerts: Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case.Linear Algebra Appl. 181 (1993), 111-130. Zbl 0772.34002, MR 1204345
Reference: [7] T. Geerts: Invariant subspaces and invertibility properties for singular systems: The general case.Linear Algebra Appl. 183 (1993), 61-88. Zbl 0774.93038, MR 1208197
Reference: [8] T. Geerts: Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems.Circuits, Systems Signal Process., to appear. Zbl 0809.93030, MR 1247789
Reference: [9] M. L. J. Hautus: The formal Laplace transform for smooth linear systems.(Lecture Notes in Economics and Mathematical Systems 131.) Springer-Verlag, Berlin 1976, pp. 29-46. Zbl 0345.93022, MR 0682787
Reference: [10] M. L. J. Hautus, L. M. Silverman: System structure and singular control.Linear Algebra Appl. 50 (1983), 369-402. Zbl 0522.93021, MR 0699568
Reference: [11] L. Schwartz: Theorie des Distributions.Hermann, Paris 1978. Zbl 0399.46028, MR 0209834
Reference: [12] G. C. Verghese B.C. Levy, T. Kailath: A generalized state-space for singular systems.IEEE Trans. Automat. Control AC-26 (1981), 811-831. MR 0635842
Reference: [13] J. C. Willems A. Kitapci, L.M. Silverman: Singular optimal control: A geometric approach.SIAM J. Control Optim. 24 (1986), 323-337. MR 0826519
.

Files

Files Size Format View
Kybernetika_29-1993-5_5.pdf 482.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo