Previous |  Up |  Next

Article

References:
[1] A. Bensoussan: Stochastic control in discrete time and applications to the theory of production. Math. Programm. Study 18 (1982), 43-60. MR 0656937
[2] D. P. Bertsekas: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, N.J. 1987. MR 0896902 | Zbl 0649.93001
[3] D. P. Bertsekas, S. E. Shreve: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978. MR 0511544 | Zbl 0471.93002
[4] R.N. Bhattacharya, M. Majumdar: Controlled semi-Markov models - the discounted case. J. Statist. Plann. Inference 21 (1989), 365-381. MR 0995606 | Zbl 0673.93089
[5] D. Blackwell: Discounted dynamic programming. Ann. Math. Statist. 36 (1965), 226-235. MR 0173536 | Zbl 0133.42805
[6] R.S. Bucy: Stability and positive supermartingales. J. Diff. Eq. 1 (1965), 151-155. MR 0191005 | Zbl 0203.17505
[7] R. Cavazos-Cadena: Finite-state approximations for denumerable state discounted Markov decision processes. Appl. Math. Optim. 11, (1986), 1-26. MR 0826849 | Zbl 0606.90132
[8] M.H.A. Davis: Martingale methods in stochastic control. Lecture Notes in Control and Inform. Sci. 16 (1979), 85-117. MR 0547467 | Zbl 0409.93052
[9] E. B. Dynkin, A. A. Yushkevich: Controlled Markov Processes. Springer-Verlag, New York 1979. MR 0554083
[10] O. Hernández-Lerma: Lyapunov criteria for stability of differential equations with Markov parameters. Bol. Soc. Mat. Mexicana 24 (1979), 27-48. MR 0579667
[11] O. Hernández-Lerma: Adaptive Markov Control Processes. Springer-Verlag, New York 1989. MR 0995463
[12] O. Hernández-Lerma, R. Cavazos-Cadena: Density estimation and adaptive control of Markov processes: average and discounted criteria. Acta Appl. Math. 20 (1990), 285-307. MR 1081591
[13] O. Hernández-Lerma, J. B. Lasserre: Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Syst. Control Lett. 15 (1990), 349-356. MR 1078813
[14] O. Hernández-Lerma, J. B. Lasserre: Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. (to appear). MR 1224804
[15] O Hernández-Lerma, J. B. Lasserre: Error bounds for rolling horizon policies in discrete-time Markov control processes. IEEE Trans. Automat. Control 35 (1990), 1118-1124. MR 1073256
[16] O. Hernández-Lerma R. Montes de Oca, R. Cavazos-Cadena: Recurrence conditions for Markov decision processes with Borel state space: a survey. Ann. Oper. Res. 28 (1991), 29-46. MR 1105165
[17] O. Hernández-Lerma, W. Runggaldier: Monotone approximations for convex stochastic control problems (submitted for publication).
[18] K. Hinderer: Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin - Heidelberg - New York 1970. MR 0267890 | Zbl 0202.18401
[19] A. Hordijk, H.C. Tijms: A counterexample in discounted dynamic programming. J. Math. Anal. Appl. 39 (1972), 455-457. MR 0307666 | Zbl 0238.49017
[20] H.J. Kushner: Optimal discounted stochastic control for diffusion processes. SIAM J. Control 5 (1967), 520-531. MR 0224388 | Zbl 0178.20003
[21] S.A. Lippman: On the set of optimal policies in discrete dynamic programming. J. Math. Anal. Appl. 24 (1968), 2,440-445. MR 0231615 | Zbl 0194.20602
[22] S.A. Lippman: On dynamic programming with unbounded rewards. Manag. Sci. 21 (1975), 1225-1233. MR 0398535 | Zbl 0309.90017
[23] P. Mandl: On the variance in controlled Markov chains. Kybernetika 7 (1971), 1, 1-12. MR 0286178 | Zbl 0215.25902
[24] P. Mandl: A connection between controlled Markov chains and martingales. Kybernetika 9 (1973), 4, 237-241. MR 0323427 | Zbl 0265.60060
[25] S.P. Meyn: Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function. SIAM J. Control Optim. 27 (1989), 1409-1439. MR 1022436 | Zbl 0681.60067
[26] U. Rieder: On optimal policies and martingales in dynamic programming. J. Appl. Probab. 13 (1976), 507-518. MR 0421683 | Zbl 0353.90091
[27] U. Rieder: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131. MR 0493590 | Zbl 0385.28005
[28] M. Schäl: Estimation and control in discounted stochastic dynamic programming. Stochastics 20 (1987), 51-71. MR 0875814
[29] J. Wessels: Markov programming by successive approximations with respect to weighted supremum norms. J. Math. Anal. Appl. 58 (1977), 326-335. MR 0441363 | Zbl 0354.90087
[30] W. Whitt: Approximations of dynamic programs. I. Math. Oper. Res. 4 (1979), 179-185. MR 0543929 | Zbl 0408.90082
Partner of
EuDML logo