[1] A. Bensoussan:
Stochastic control in discrete time and applications to the theory of production. Math. Programm. Study 18 (1982), 43-60.
MR 0656937
[2] D. P. Bertsekas:
Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, N.J. 1987.
MR 0896902 |
Zbl 0649.93001
[3] D. P. Bertsekas, S. E. Shreve:
Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978.
MR 0511544 |
Zbl 0471.93002
[4] R.N. Bhattacharya, M. Majumdar:
Controlled semi-Markov models - the discounted case. J. Statist. Plann. Inference 21 (1989), 365-381.
MR 0995606 |
Zbl 0673.93089
[7] R. Cavazos-Cadena:
Finite-state approximations for denumerable state discounted Markov decision processes. Appl. Math. Optim. 11, (1986), 1-26.
MR 0826849 |
Zbl 0606.90132
[8] M.H.A. Davis:
Martingale methods in stochastic control. Lecture Notes in Control and Inform. Sci. 16 (1979), 85-117.
MR 0547467 |
Zbl 0409.93052
[9] E. B. Dynkin, A. A. Yushkevich:
Controlled Markov Processes. Springer-Verlag, New York 1979.
MR 0554083
[10] O. Hernández-Lerma:
Lyapunov criteria for stability of differential equations with Markov parameters. Bol. Soc. Mat. Mexicana 24 (1979), 27-48.
MR 0579667
[11] O. Hernández-Lerma:
Adaptive Markov Control Processes. Springer-Verlag, New York 1989.
MR 0995463
[12] O. Hernández-Lerma, R. Cavazos-Cadena:
Density estimation and adaptive control of Markov processes: average and discounted criteria. Acta Appl. Math. 20 (1990), 285-307.
MR 1081591
[13] O. Hernández-Lerma, J. B. Lasserre:
Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Syst. Control Lett. 15 (1990), 349-356.
MR 1078813
[14] O. Hernández-Lerma, J. B. Lasserre:
Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. (to appear).
MR 1224804
[15] O Hernández-Lerma, J. B. Lasserre:
Error bounds for rolling horizon policies in discrete-time Markov control processes. IEEE Trans. Automat. Control 35 (1990), 1118-1124.
MR 1073256
[16] O. Hernández-Lerma R. Montes de Oca, R. Cavazos-Cadena:
Recurrence conditions for Markov decision processes with Borel state space: a survey. Ann. Oper. Res. 28 (1991), 29-46.
MR 1105165
[17] O. Hernández-Lerma, W. Runggaldier: Monotone approximations for convex stochastic control problems (submitted for publication).
[18] K. Hinderer:
Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin - Heidelberg - New York 1970.
MR 0267890 |
Zbl 0202.18401
[19] A. Hordijk, H.C. Tijms:
A counterexample in discounted dynamic programming. J. Math. Anal. Appl. 39 (1972), 455-457.
MR 0307666 |
Zbl 0238.49017
[20] H.J. Kushner:
Optimal discounted stochastic control for diffusion processes. SIAM J. Control 5 (1967), 520-531.
MR 0224388 |
Zbl 0178.20003
[21] S.A. Lippman:
On the set of optimal policies in discrete dynamic programming. J. Math. Anal. Appl. 24 (1968), 2,440-445.
MR 0231615 |
Zbl 0194.20602
[22] S.A. Lippman:
On dynamic programming with unbounded rewards. Manag. Sci. 21 (1975), 1225-1233.
MR 0398535 |
Zbl 0309.90017
[24] P. Mandl:
A connection between controlled Markov chains and martingales. Kybernetika 9 (1973), 4, 237-241.
MR 0323427 |
Zbl 0265.60060
[25] S.P. Meyn:
Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function. SIAM J. Control Optim. 27 (1989), 1409-1439.
MR 1022436 |
Zbl 0681.60067
[26] U. Rieder:
On optimal policies and martingales in dynamic programming. J. Appl. Probab. 13 (1976), 507-518.
MR 0421683 |
Zbl 0353.90091
[27] U. Rieder:
Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131.
MR 0493590 |
Zbl 0385.28005
[28] M. Schäl:
Estimation and control in discounted stochastic dynamic programming. Stochastics 20 (1987), 51-71.
MR 0875814
[29] J. Wessels:
Markov programming by successive approximations with respect to weighted supremum norms. J. Math. Anal. Appl. 58 (1977), 326-335.
MR 0441363 |
Zbl 0354.90087