Previous |  Up |  Next

Article

Title: A non-ergodic version of Rudolph's theorem (English)
Author: Krutina, Miroslav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 26
Issue: 5
Year: 1990
Pages: 373-391
.
Category: math
.
MSC: 28D10
MSC: 28D20
idZBL: Zbl 0719.28009
idMR: MR1079676
.
Date available: 2009-09-24T18:20:41Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124598
.
Reference: [1] W. Ambrose: Representation of ergodic flows.Ann. of Math. 42 (1941), 723 - 739. Zbl 0025.26901, MR 0004730
Reference: [2] W. Ambrose, S. Kakutani: Structure and continuity of measurable flows.Duke Math. J. 9(1942), 25-42. Zbl 0063.00065, MR 0005800
Reference: [3] M. Denker, Ch. Grillenberger, K. Sigmund: Ergodic Theory on Compact Spaces.(Lecture Notes in Mathematics 527.) Springer-Verlag, Berlin-Heidelberg -New York 1976. Zbl 0328.28008, MR 0457675
Reference: [4] Y. Katznelson, B. Weiss: Commuting measure-preserving transformations.Israel J. Math. 72(1972), 161-173. Zbl 0239.28014, MR 0316680
Reference: [5] U. Krengel: Darstellungssätze für Strömungen und Halbströmungen I.Math. Ann. 776 (1968), 181-190. Zbl 0167.32704, MR 0224773
Reference: [6] U. Krengel: Recent results on generators in ergodic theory.In: Trans. Sixth Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Prague 1973, pp. 465-482. Zbl 0318.94024, MR 0348078
Reference: [7] U. Krengel: On Rudolph's representation of aperiodic flows.Ann. Inst. H. Poincaré Prob. Statist. 72fi(1976), 319-338. Zbl 0356.28005, MR 0435354
Reference: [8] M. Krutina: Asymptotic rate of a flow.Comment. Math. Univ. Carolin. 30 (1989), 23 - 31. Zbl 0674.28009, MR 0995698
Reference: [9] M. Krutina: A note on the relation between asymptotic rates of a flow under a function and its basis-automorphism.Comment. Math. Univ. Carolin. 30 (1989), 721 - 726. Zbl 0699.28008, MR 1045900
Reference: [10] D. Rudolph: A two-valued step coding for ergodic flows.Math. Zeitschrift 150 (1976), 201-220. Zbl 0325.28019, MR 0414825
Reference: [11] K. Winkelbauer: On discrete information sources.In: Trans. Third Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci, Prague 1964, pp. 765-830. Zbl 0126.35702, MR 0166000
Reference: [12] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations.Comment. Math. Univ. Carolin. 75(1977), 782-812. Zbl 0368.28020, MR 0463403
.

Files

Files Size Format View
Kybernetika_26-1990-5_2.pdf 874.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo