Previous |  Up |  Next

Article

Title: A summary on entropy statistics (English)
Author: Esteban, María Dolores
Author: Morales, Domingo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 4
Year: 1995
Pages: 337-346
.
Category: math
.
MSC: 62B10
MSC: 62E20
MSC: 94A17
idZBL: Zbl 0857.62002
idMR: MR1357348
.
Date available: 2009-09-24T18:56:19Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124679
.
Reference: [1] J. Aczel, Z. Daroczy: Characterisierung der entropien positiver ordnung und der Shannonschen entropie.Acta Math. Acad. Sci. Hunger. 14 (1963), 95-121. MR 0191738
Reference: [2] S. Arimoto: Information-theoretical considerations on estimation problems.Inform. and Control 19(1971), 181-194. Zbl 0222.94022, MR 0309224
Reference: [3] M. Belis, S. Guiasu: A quantitative-qualitative measure of information in cybernetics systems.IEEE Trans. Inform. Theory IT-4 (1968), 593-594.
Reference: [4] J. Feistauerova, I. Vajda: Testing system entropy and prediction error probability.IEEE Trans. Systems Man Cybernet. 23 (1993), 1352-1358.
Reference: [5] C. Ferreri: Hypoentropy and related heterogeneity divergence measures.Statistica 40 (1980), 55-118. MR 0586545
Reference: [6] P. Gil: Medidas de incertidumbre e informacion en problemas de decision estadistica.Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid LXIX (1975), 549-610. MR 0394956
Reference: [7] J. Havrda, F. Charvát: Concept of structural $\alpha$-entropy.Kybernetika 3 (1967), 30-35. MR 0209067
Reference: [8] J. N. Kapur: Generalized entropy of order a and type $\beta$.The Math. Seminar 4 (1967), 78-82. MR 0269428
Reference: [9] H. B. Mann, A. Wald: On the choice of the number of class intervals in the application of the chi-squared test.Ann. Math. Statist. 13 (1942), 306-317. MR 0007224
Reference: [10] C. F. Picard: The use of Information theory in the study of the diversity of biological populations.In: Proc. Fifth Berk. Symp. IV, 1979, pp. 163-177.
Reference: [11] C. R. Rao: Linear Statistical Inference and its Applications.Second edition. J. Wiley, New York 1973. Zbl 0256.62002, MR 0346957
Reference: [12] A. Renyi: On the measures of entropy and information.In: Proc. 4th Berkeley Symp. Math. Statist, and Prob., 1, 1961, pp. 547-561. MR 0132570
Reference: [13] A. P. Sant'anna, I. J. Taneja: Trigonometric entropies, ensen difference divergences and error bounds.Inform. Sci. 35 (1985), 145-156. MR 0794765
Reference: [14] C. E. Shannon: A mathematical theory of communication.Bell. System Tech. J. 21 (1948), 379-423. Zbl 1154.94303, MR 0026286
Reference: [15] B. D. Sharma, D. P. Mittal: New non-additive measures of relative information.J. Combin. Inform. System Sci. 2 (1975), 122-133. MR 0476167
Reference: [16] B. D. Sharma, I. J. Taneja: Entropy of type ($\alpha$, $\beta$) and other generalized measures in information theory.Metrika 22 (1975), 205-215. Zbl 0328.94012, MR 0398670
Reference: [17] B. D. Sharma, I. J. Taneja: Three generalized additive measures of entropy.Elektron. Informationsverarb. Kybernet. 13 (1977), 419-433. Zbl 0372.94021, MR 0530208
Reference: [18] I. J. Taneja: A Study of Generalized Measures in Information Theory.Ph.D. Thesis, University of Delhi 1975.
Reference: [19] R. S. Varma: Generalizations of Renyi's entropy of order $\alpha$.J. Math. Sci. 1 (1966), 34-48. Zbl 0166.15401, MR 0210515
.

Files

Files Size Format View
Kybernetika_31-1995-4_3.pdf 1.194Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo