Previous |  Up |  Next

Article

Title: Jaroslav Hájek and asymptotic theory of rank tests (English)
Author: Jurečková, Jana
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 3
Year: 1995
Pages: 239-250
.
Category: math
.
MSC: 01A70
MSC: 62G10
MSC: 62G20
idZBL: Zbl 0839.62056
idMR: MR1337979
.
Date available: 2009-09-24T18:55:15Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124723
.
Reference: [1] J. Hájek: Some extensions of the Wald-Wofowitz-Noether theorem.Ann. Math. Statist. 32 (1961), 506-523. MR 0130707
Reference: [2] J. Hájek: Asymptotically most powerful rank order tests.Ann. Math. Statist. 33 (1962), 1124-1147. MR 0143304
Reference: [3] J. Hájek: Extension of the Kolmogorov-Smirnov test to the regression alternatives. Bernoulli-Bayes-Laplace.In: Proc. Internat. Research Seminar (J. Neyman and L. LeCam, eds.), Springer-Verlag, Berlin 1965, pp. 45-60. MR 0198622
Reference: [4] J. Hájek: Locally most powerful tests of independence.In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 45-51. MR 0233473
Reference: [5] J. Hájek: Some new results in the theory of rank tests.In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 53-55. MR 0231501
Reference: [6] J. Hájek: Asymptotic normality of simple linear rank statistics under alternatives.Ann. Math. Statist. 39 (1968), 325-346. MR 0222988
Reference: [7] J. Hájek: A Course in Nonparametric Statistics.Holden-Day, San Francisco 1969. MR 0246467
Reference: [8] J. Hájek: Miscellaneous problems of rank test theory.In: Nonparam. Techniques in Statist. Inference (M.L. Puri, ed.), Cambridge Univ. Press 1970, pp. 3-19. MR 0279947
Reference: [9] J. Hájek: Asymptotic sufficiency of the vector of ranks in the Bahadur sense.Ann. Statist. 2 (1974), 75-83. MR 0356355
Reference: [10] J. Hájek, Z. Šidák: Theory of Rank Tests.Academia, Prague and Academic Press, New York 1967. (Russian translation: Nauka, Moscow 1971.) MR 0229351
Reference: [11] J. Hájek, V. Dupač: Asymptotic normality of simple linear rank statistics under alternatives II.Ann. Math. Statist. 40 (1969), 1992-2017. MR 0253487
Reference: [12] J. Hájek, V. Dupač: Asymptotic normality of the Wilcoxon statistic under divergent alternatives.Zastos. Mat. 10 (1969), 171-178. MR 0258171
Reference: [13] H. Chernoff, I. R. Savage: Asymptotic normahty and efficiency of certain nonparametric test statistics.Ann. Math. Statist. 29 (1958), 972-994. MR 0100322
Reference: [14] M. D. Donsker: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 23 (1952), 277-281. Zbl 0046.35103, MR 0047288
Reference: [15] J. L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 20 (1949), 393-403. Zbl 0035.08901, MR 0030732
Reference: [16] M. Driml: Convergence of compact measures on metric spaces.In: Trans. 2nd Prague Conference on Inform. Theory, NČSAV, Prague 1959, pp. 71-92. MR 0125929
Reference: [17] M. Dwass: On the asymptotic normahty of certain rank order statistics.Ann. Math. Statist. 24 (1953), 303-306. MR 0055628
Reference: [18] M. Dwass: On the asymptotic normahty of some statistics used in non-parametric setup.Ann. Math. Statist. 26 (1955), 334-339. MR 0069447
Reference: [19] Z. Govindarajulu L. LeCam, M. Raghavachari: Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics.In: Proc. 5th Berkeley Symp. Math. Statist. Probab. 1 (1966), pp. 609-638. MR 0214193
Reference: [20] C. Gutenbrunner, J. Jurečková: Regression rank scores and regression quantiles.Ann. Statist. 20 (1992), 305-330. MR 1150346
Reference: [21] C. Gutenbrunner J. Jurečková R. Koenker, S. Portnoy: Tests of linear hypotheses based on regression rank scores.J. Nonpar. Statist. 2 (1993), 307-331. MR 1256383
Reference: [22] W. Hoeffding: A combinatorial central hmit theorem.Ann. Math. Statist. 22 (1951) 558-566. MR 0044058
Reference: [23] J. Jurečková: Uniform asymptotic linearity of regression rank scores process.In: Nonpar. Statist. Rel. Topics (A. K. Md. E. Saleh, ed.), Elsevier Sci. Publ. 1992, pp. 217-228. MR 1226726
Reference: [24] J. Jurečková: Tests of Kolmogorov-Smirnov type based on regression rank scores.In: Trans. 11th Prague Conference on Inform. Theory (J.A.Visek, ed.), Academia, Prague and Kluwer Acad. Publ. 1992, pp. 41-49.
Reference: [25] R. Koenker, G. Bassett: Regression quantiles.Econometrica 46 (1978), 33-50. Zbl 0373.62038, MR 0474644
Reference: [26] M. Motoo: On the Hoeffding's combinatorial central limit theorem.Ann. Inst. Statist. Math. 5 (1957), 145-154. Zbl 0084.13802, MR 0089560
Reference: [27] G. E. Noether: On a theorem of Wald and Wolfowitz.Ann. Math. Statist. 20 (1949), 455-458.
Reference: [28] Ju. V. Prochorov: Convergence of stochastic processes and limiting theorems of probability theory.Theory Probab. 1 (1956), 177-238.
Reference: [29] R. Pyke, G. R. Shorack: Weak convergence of a two-sample empirical process and anew approach to Chernoff-Savage theorems.Ann. Math. Statist. 59(1968), 755-771.
Reference: [30] M. Raghavachari: On a theorem of Bahadur on the rate of convergence of tests statistics.Ann. Math. Statist. 41 (1970), 1695-1699.
Reference: [31] D. Ruppert, R. J. Carroll: Trimmed least squares estimation in the linear model.J. Amer. Statist. Assoc. 15 (1980), 828-838. Zbl 0459.62055
Reference: [32] A. Wald, J. Wolfowitz: Statistical tests based on permutations of the observations.Ann. Math. Statist. 15 (1944), 358-372. Zbl 0063.08124
Reference: [33] G. Woodworth: Large deviations and Bahadur efficiency in linear rank statistic.Ann. Math. Statist. 41 (1970), 251-283.
.

Files

Files Size Format View
Kybernetika_31-1995-3_4.pdf 1.141Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo