Title:
|
Jaroslav Hájek and asymptotic theory of rank tests (English) |
Author:
|
Jurečková, Jana |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
31 |
Issue:
|
3 |
Year:
|
1995 |
Pages:
|
239-250 |
. |
Category:
|
math |
. |
MSC:
|
01A70 |
MSC:
|
62G10 |
MSC:
|
62G20 |
idZBL:
|
Zbl 0839.62056 |
idMR:
|
MR1337979 |
. |
Date available:
|
2009-09-24T18:55:15Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124723 |
. |
Reference:
|
[1] J. Hájek: Some extensions of the Wald-Wofowitz-Noether theorem.Ann. Math. Statist. 32 (1961), 506-523. MR 0130707 |
Reference:
|
[2] J. Hájek: Asymptotically most powerful rank order tests.Ann. Math. Statist. 33 (1962), 1124-1147. MR 0143304 |
Reference:
|
[3] J. Hájek: Extension of the Kolmogorov-Smirnov test to the regression alternatives. Bernoulli-Bayes-Laplace.In: Proc. Internat. Research Seminar (J. Neyman and L. LeCam, eds.), Springer-Verlag, Berlin 1965, pp. 45-60. MR 0198622 |
Reference:
|
[4] J. Hájek: Locally most powerful tests of independence.In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 45-51. MR 0233473 |
Reference:
|
[5] J. Hájek: Some new results in the theory of rank tests.In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 53-55. MR 0231501 |
Reference:
|
[6] J. Hájek: Asymptotic normality of simple linear rank statistics under alternatives.Ann. Math. Statist. 39 (1968), 325-346. MR 0222988 |
Reference:
|
[7] J. Hájek: A Course in Nonparametric Statistics.Holden-Day, San Francisco 1969. MR 0246467 |
Reference:
|
[8] J. Hájek: Miscellaneous problems of rank test theory.In: Nonparam. Techniques in Statist. Inference (M.L. Puri, ed.), Cambridge Univ. Press 1970, pp. 3-19. MR 0279947 |
Reference:
|
[9] J. Hájek: Asymptotic sufficiency of the vector of ranks in the Bahadur sense.Ann. Statist. 2 (1974), 75-83. MR 0356355 |
Reference:
|
[10] J. Hájek, Z. Šidák: Theory of Rank Tests.Academia, Prague and Academic Press, New York 1967. (Russian translation: Nauka, Moscow 1971.) MR 0229351 |
Reference:
|
[11] J. Hájek, V. Dupač: Asymptotic normality of simple linear rank statistics under alternatives II.Ann. Math. Statist. 40 (1969), 1992-2017. MR 0253487 |
Reference:
|
[12] J. Hájek, V. Dupač: Asymptotic normality of the Wilcoxon statistic under divergent alternatives.Zastos. Mat. 10 (1969), 171-178. MR 0258171 |
Reference:
|
[13] H. Chernoff, I. R. Savage: Asymptotic normahty and efficiency of certain nonparametric test statistics.Ann. Math. Statist. 29 (1958), 972-994. MR 0100322 |
Reference:
|
[14] M. D. Donsker: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 23 (1952), 277-281. Zbl 0046.35103, MR 0047288 |
Reference:
|
[15] J. L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 20 (1949), 393-403. Zbl 0035.08901, MR 0030732 |
Reference:
|
[16] M. Driml: Convergence of compact measures on metric spaces.In: Trans. 2nd Prague Conference on Inform. Theory, NČSAV, Prague 1959, pp. 71-92. MR 0125929 |
Reference:
|
[17] M. Dwass: On the asymptotic normahty of certain rank order statistics.Ann. Math. Statist. 24 (1953), 303-306. MR 0055628 |
Reference:
|
[18] M. Dwass: On the asymptotic normahty of some statistics used in non-parametric setup.Ann. Math. Statist. 26 (1955), 334-339. MR 0069447 |
Reference:
|
[19] Z. Govindarajulu L. LeCam, M. Raghavachari: Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics.In: Proc. 5th Berkeley Symp. Math. Statist. Probab. 1 (1966), pp. 609-638. MR 0214193 |
Reference:
|
[20] C. Gutenbrunner, J. Jurečková: Regression rank scores and regression quantiles.Ann. Statist. 20 (1992), 305-330. MR 1150346 |
Reference:
|
[21] C. Gutenbrunner J. Jurečková R. Koenker, S. Portnoy: Tests of linear hypotheses based on regression rank scores.J. Nonpar. Statist. 2 (1993), 307-331. MR 1256383 |
Reference:
|
[22] W. Hoeffding: A combinatorial central hmit theorem.Ann. Math. Statist. 22 (1951) 558-566. MR 0044058 |
Reference:
|
[23] J. Jurečková: Uniform asymptotic linearity of regression rank scores process.In: Nonpar. Statist. Rel. Topics (A. K. Md. E. Saleh, ed.), Elsevier Sci. Publ. 1992, pp. 217-228. MR 1226726 |
Reference:
|
[24] J. Jurečková: Tests of Kolmogorov-Smirnov type based on regression rank scores.In: Trans. 11th Prague Conference on Inform. Theory (J.A.Visek, ed.), Academia, Prague and Kluwer Acad. Publ. 1992, pp. 41-49. |
Reference:
|
[25] R. Koenker, G. Bassett: Regression quantiles.Econometrica 46 (1978), 33-50. Zbl 0373.62038, MR 0474644 |
Reference:
|
[26] M. Motoo: On the Hoeffding's combinatorial central limit theorem.Ann. Inst. Statist. Math. 5 (1957), 145-154. Zbl 0084.13802, MR 0089560 |
Reference:
|
[27] G. E. Noether: On a theorem of Wald and Wolfowitz.Ann. Math. Statist. 20 (1949), 455-458. |
Reference:
|
[28] Ju. V. Prochorov: Convergence of stochastic processes and limiting theorems of probability theory.Theory Probab. 1 (1956), 177-238. |
Reference:
|
[29] R. Pyke, G. R. Shorack: Weak convergence of a two-sample empirical process and anew approach to Chernoff-Savage theorems.Ann. Math. Statist. 59(1968), 755-771. |
Reference:
|
[30] M. Raghavachari: On a theorem of Bahadur on the rate of convergence of tests statistics.Ann. Math. Statist. 41 (1970), 1695-1699. |
Reference:
|
[31] D. Ruppert, R. J. Carroll: Trimmed least squares estimation in the linear model.J. Amer. Statist. Assoc. 15 (1980), 828-838. Zbl 0459.62055 |
Reference:
|
[32] A. Wald, J. Wolfowitz: Statistical tests based on permutations of the observations.Ann. Math. Statist. 15 (1944), 358-372. Zbl 0063.08124 |
Reference:
|
[33] G. Woodworth: Large deviations and Bahadur efficiency in linear rank statistic.Ann. Math. Statist. 41 (1970), 251-283. |
. |