Previous |  Up |  Next

Article

Title: A note on asymptotic linearity of $M$-statistics in nonlinear models (English)
Author: Rubio, Asunción Mária
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 4
Year: 1996
Pages: 353-374
.
Category: math
.
MSC: 62F10
MSC: 62F12
MSC: 62J02
idZBL: Zbl 0882.62053
idMR: MR1420128
.
Date available: 2009-09-24T19:03:29Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124729
.
Reference: [1] D. M. Bates, D. G. Watts: Nonlinear Regression Analysis and Its Applications.J. Wiley \& Sons, New York 1988. Zbl 0728.62062, MR 1060528
Reference: [2] P. J. Bickel, M. J. Wichura: Convergence criteria for multiparameter stochastic processes and some applications.Ann. Math. Statist. 42 (1971), 1656-1670. Zbl 0265.60011, MR 0383482
Reference: [3] M. Csörgö, P. Révész: Strong Approximation in Probability and Statistics.Akademia Kiadó, Budapest 1981. MR 0666546
Reference: [4] P. L. Davis: Aspects of robust linear regression.Ann. Statist. 21 (1993), 1843-1899. MR 1245772
Reference: [5] F. R. Hampel E. M. Ronchetti P. J. Rousseeuw, W. A. Stahel: Robust Statistics -- The Approach Based on Influence Functions.J. Wiley \& Sons, New York 1986. MR 0829458
Reference: [6] P. J. Huber: Robust estimation of a location parameter.Ann. Math. Statist. 35 (1964), 73-101. Zbl 0136.39805, MR 0161415
Reference: [7] J. Jurečková: Consistency of $M$-estimators in linear model generated by non-monotone and discontinuous $\psi$-functions.Probab. Math. Statist. 10 (1988), 1-10. MR 0990395
Reference: [8] J. Jurečková, B. Procházka: Regression quantiles and trimmed least squares estimator in nonlinear regression model.Nonparametric Statist. 3 (1994), 201-222. MR 1291545
Reference: [9] J. Jurečková, P. K. Sen: Uniform second order asymptotic linearity of $M$-statistics in linear models.Statist. Decisions 7 (1989), 263-276. MR 1029480
Reference: [10] J. Jurečková, A. H. Welsh: Asymptotic relations between $L$- and $M$-estimators in the linear model.Ann. Inst. Statist. Math. 42 (1990), 671-698. MR 1089470
Reference: [11] F. Liese, I. Vajda: Consistency of $M$-estimators in general models.J. Multivariate Anal. 50 (1994), 93-114. MR 1292610
Reference: [12] A. Marazzi: Algorithms, Routines and S Functions for Robust Statistics.Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, California 1992. MR 1184396
Reference: [13] J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York and London 1970. Zbl 0241.65046, MR 0273810
Reference: [14] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles.In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Hardle, D. Martin, eds.), Springer-Verlag, New York, 1983, pp. 231-246. MR 0786311
Reference: [15] C. R. Rao, L. C. Zhao: On the consistency of $M$-estimate in linear model obtained through an estimating equation.Statist. Probab. Lett. 14 (1992), 79-84. MR 1172294
Reference: [16] A. Rubio L. Aguilar, J. Á. Víšek: Testing for difference between models.Comput. Statist. 8 (1992), 57-70. MR 1220337
Reference: [17] A. Rubio F. Quintana, J. Á. Víšek: Test for differences of $M$-estimates between nonlinear regression models.Probab. Math. Statist. 14 (1993), 2, 189-206. MR 1321760
Reference: [18] J. Á. Víšek: Stability of regression models estimates with respect to subsamples.Computat. Statist. 7 (1992), 183-203. MR 1178353
Reference: [19] J. Á. Víšek: Problems connected with selection of robust procedure.In: Proceedings of PROBASTAT'91 (A. Pázman and J. Volaufová, eds.), Printing House of the Technical University of Liptovský Mikuláš 1992, pp. 189-203.
Reference: [20] J. Á. Víšek: On the role of contamination level and the least favorable behaviour of gross-error sensitivity.Probab. Math. Statist. 14 (1993), 2, 173-187. MR 1321759
Reference: [21] J. Á. Víšek: A cautionary note on the method of Least Median of Squares reconsidered.In: Transactions of the Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (J. Á. Víšek and P. Lachout, eds.), Prague 1994, pp. 254-259.
Reference: [22] J. Á. Víšek: Sensitivity analysis of $M$-estimates.Ann. Inst. Statist. Math., to appear. MR 1424776
.

Files

Files Size Format View
Kybernetika_32-1996-4_3.pdf 2.234Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo