| Title: | An extension of the root perturbation $m$-dimensional polynomial factorization method (English) | 
| Author: | Mastorakis, Nikos E. | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 32 | 
| Issue: | 5 | 
| Year: | 1996 | 
| Pages: | 443-453 | 
| . | 
| Category: | math | 
| . | 
| MSC: | 12Y05 | 
| MSC: | 26C10 | 
| MSC: | 65H05 | 
| MSC: | 65H10 | 
| MSC: | 93B40 | 
| MSC: | 93B60 | 
| idZBL: | Zbl 0886.65053 | 
| idMR: | MR1420134 | 
| . | 
| Date available: | 2009-09-24T19:04:12Z | 
| Last updated: | 2012-06-06 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/124822 | 
| . | 
| Reference: | [1] A. C. Antulas: A system-theoretic approach to the factorization theory of non-singular polynomial matrices.Internat. J. Systems Sci. 33 (1981), 6, 1005-1026. MR 0624168 | 
| Reference: | [2] J. S. Chakrabarti, S. K. Mitra: An algorithm for multivariable polynomial factorization.In: Proc. IEEE Internat. Symp. Circ. Syst. 1977, pp. 678-683. | 
| Reference: | [3] G. E. Collins: Computer algebra of polynomials and functions.Amer. Math. Monthly 80 (1973), 725-755. MR 0323750 | 
| Reference: | [4] D. E. Dudgeon: The existence of cepstra for 2-D polynomials.IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (1975), 2, 242-243. | 
| Reference: | [5] M. P. Ekstrom, R. E. Twogood: Finite order, recursive models for 2-D random fields.In: Proc. of the 20th Hidwest Symp. Circ. Syst. 1977, pp. 188-189. | 
| Reference: | [6] M. P. Ekstrom, J. W. Woods: Spectral factorization.IEEE Trans. Acoust. Speech Signal Process. ASSP-24 (1976), 2, 115-128. MR 0398676 | 
| Reference: | [7] R. Gorez: Matrix factorization. Chandrasekhar equations techniques in the design of linear quadratic optimal control systems.Internat. J. Systems Sci. 12 (1981), 8, 907-915. MR 0628077 | 
| Reference: | [8] R. L. Graham D. E. Knuth, O. Patashnik: Concrete Mathematics, A Foundation for Computer Science.Addison-Wesley Publishing Company, New York 1994. MR 1397498 | 
| Reference: | [9] T. Kaczorek: Two-Dimensional Linear Systems.Springer-Verlag, Berlin--Heidelberg 1985. Zbl 0593.93031, MR 0870854 | 
| Reference: | [10] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental algorithms. -- Vol. 2: Seminumerical Algorithms. -- Vol. 3: Electronic Digital Computers -- Programming.Addison-Wesley Publishing Company, London--Amsterdam--Ontario--Sydney 1981. MR 0378456 | 
| Reference: | [11] N. E. Mastorakis: Multidimensional Polynomials.Ph.D. Thesis. National Technical University of Athens 1992. Zbl 0781.93048 | 
| Reference: | [12] N. E. Mastorakis, E. Nikos: Algebra and Analysis of Multivariable Polynomials: General methods of multivariable polynomial factorization.Athens 1988. (In Greek). | 
| Reference: | [13] N. E. Mastorakis, N. J. Theodorou: 'Operators' method for $m$-D polynomials factorization.Found. Comput. Decision Sci. 15 (1990), 2-3, 159-172. MR 1114659 | 
| Reference: | [14] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A simple multidimensional polynomial factorization method.In: IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, VII.B.1-1. | 
| Reference: | [15] N. E. Mastorakis, N. J. Theodorou: State-space model factorization in $m$-dimensions. Application in stability.Foundation of Computing and Decision Sciences 17 (1992), 55-61. MR 1174151 | 
| Reference: | [16] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: Factorization of $m$-D polynomials into linear $m$-D factors.Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. MR 1194285 | 
| Reference: | [17] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: A general factorization method for multivariable polynomial.Mult. Syst. and Sign. Process. 5 (1994), 151-178. MR 1279541 | 
| Reference: | [18] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A reduction method for multivariable polynomial factorization.In: Conference SPRANN'94, IMACS-IEEE International Symposium, Lille 1994, pp. 59-64. | 
| Reference: | [19] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: Multidimensional polynomial factorization through the root perturbation approach. Part I.Control Theory Adv. Technology 10 (1994), 4, 901-911. MR 1330954 | 
| Reference: | [20] P. Misra, R. V. Patel: Simple factorizability of 2-D polynomials.In: Internat. Symp. Circ. Syst., New Orleans 1990, pp. 1207-1210. | 
| Reference: | [21] L. S. Shieh, N. Clahin: A computer-aided method for the factorization of matrix polynomials.Internat. J. Systems Sci. 12 (1981), 3, 305-323. MR 0610912 | 
| Reference: | [22] N. J. Theodorou, S. C. Tzafestas: Factorizability conditions for multidimensional polynomials.IEEE Trans. Automat. Control AC-30 (1985), 7, 697-700. Zbl 0563.12019, MR 0790261 | 
| Reference: | [23] S. G. Tzafestas (ed.): Multidimensional Systems. Techniques and Applications.Marcel Dekker, New York 1986. Zbl 0624.00025 | 
| Reference: | [24] P. W. Wang, L. P. Rotchild: Factorizing over the integers.Comput. Math. 30 (1975), 324-336. | 
| . |