Previous |  Up |  Next

Article

Title: Variable metric method with limited storage for large-scale unconstrained minimization (English)
Author: Lukšan, Ladislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 18
Issue: 6
Year: 1982
Pages: 517-528
.
Category: math
.
MSC: 65K05
MSC: 65K10
MSC: 90C30
idZBL: Zbl 0514.65049
idMR: MR707399
.
Date available: 2009-09-24T17:30:59Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124855
.
Reference: [1 ] E. M. L. Beale: A derivation of conjugate gradients.In: Numerical Methods for Non-linear Optimization (F. A. Lootsma ed.), Academic Press, London 1972, 39-43. Zbl 0279.65052, MR 0381696
Reference: [2] M. C. Biggs: Minimization algorithms making use of non-quadratic properties of the objective function.J. Inst. Math. Appl. 5 (1971), 3, 315 - 327. Zbl 0226.90045
Reference: [3] C. G.Broyden: The convergence of a class of double rank minimization algorithms 2. The new algorithm.J. Inst. Math. Appl. 6 (1970), 3, 222-231. MR 0433870
Reference: [4] A. G. Buckley: A combined conjugate gradient quasi-Newton minization algorithm.Math. Programming 15 (1978), 2, 200-210. MR 0509962
Reference: [5] A. G. Buckley: Extending the relationship between the conjugate gradient and BFGS algorithms.Math. Programming 75 (1978), 3, 343-348. Zbl 0393.90075, MR 0514615
Reference: [6] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients.Comput. J. 7 (1964), 2, 149-154. MR 0187375
Reference: [7] R. Fletcher: A new approach to variable metric algorithms.Comput. J. 13 (1970), 3, 317- 322.
Reference: [8] D. Goldfarb: A family of variable metric algorithms derived by variational means.Math. Comp. 24 (1970), 109, 23-26. MR 0258249
Reference: [9] M. R. Hestenes E. Stiefel: Methods of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards 49 (1952), 6, 409-439. MR 0060307
Reference: [10] L. Lukšan: Software package for optimization and nonlinear approximation.Proc. of 2nd IFAC/IFIP Symposium on software for computer control, Prague 1979.
Reference: [11] L. Nazareth: A relationship between the BFGS and conjugate gradient algorithms.SIAM J. Numer. Anal. 16 (1979), 5, 794-800. MR 0543969
Reference: [12] L. Nazareth: A conjugate direction algorithm without line searches.J. Optim. Theory Appl. 23 (1977), 3, 373-387. Zbl 0348.65061, MR 0525743
Reference: [13] J. Nocedal: Updating quasi-Newton matrices with limited storage.Math. Comp. 35 (1980), 151, 773-782. Zbl 0464.65037, MR 0572855
Reference: [14] S. S. Oren D. G. Luenberger: Self-scaling variable metric SSVM algorithms 1. Criteria and sufficient conditions for scaling a class of algorithms.Management Sci. 20 (1974), 5, 845-862. MR 0388773
Reference: [15] A. Perry: A modified conjugate gradient algorithm.Oper. Res. 26 (1978), 6, 1073 - 1078. Zbl 0419.90074, MR 0514875
Reference: [16] E. Polak G. Ribiere: Note sur la convergence de methodes des directions conjugees.Revue Fr. Inf. Rech. Oper. 16-R1 (1969), 35-43. MR 0255025
Reference: [17] M. J. D. Powell: Restart procedure for the conjugate gradient method.Math. Programming 72 (1977), 2, 241-254. MR 0478622
Reference: [18] B. V. Shah R. J. Buehleг O. Kempthorne: Some algorithms for minimizing a function of several variables.SIAM J. 12 (1964), 1, 74-92. MR 0165655
Reference: [19] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization.Math. Comp. 24 (1970), 111, 647-656. MR 0274029
Reference: [20] D. F. Shanno: Conjugate gradient methods with inexact searches.Math. Oper. Res. 3 (1978), 3, 244-256. Zbl 0399.90077, MR 0506662
Reference: [21] D. F. Shanno K. H. Phua: Matrix conditioning and nonlinear optimization.Math. Programming 14 (1978), 2, 149-160. MR 0474819
.

Files

Files Size Format View
Kybernetika_18-1982-6_4.pdf 980.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo