[1] M. B. Bell, F. W. Cathey: 
The iterated Kalman filter update as a Gauss-Newton method. IEEE Trans. Automat. Control 38 (1993), 2, 294-297. 
MR 1206815 | 
Zbl 0775.93237[2] D. E. Catlin: 
Estimation, Control, and the Discrete Kalman Filter. Springer-Verlag, New York 1989. 
MR 0968437 | 
Zbl 0685.93001[3] S. D. Conte, C. de Boor: Elementary Numerical Analysis. McGraw- Hill, Singapore 1987.
[4] A. Gelb: 
Applied Optimal Estimation. MIT Press, Cambridge, Massachusetts 1974. 
MR 0345688[5] Y. Hosoya, M. Taniguchi: 
A central limit theorem for stationary processes and the parameter estimation of linear processes. Ann. Statist. 10 (1982), 1, 132-153. 
MR 0642725 | 
Zbl 0484.62102[6] D. Kincaid, W. Cheney: 
Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole Publishing Company, California 1990. 
MR 1388777[7] L. Ljung: 
Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control AC-24 (1979), 1, 36-50. 
MR 0519391 | 
Zbl 0399.93054[8] N. E. Nahi: Estimation Theory and Applications. Wiley, New York 1969.
[9] M. D. Smooke: 
Error estimate for the modified Newton method with application to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory Appl. 39 (1983), 4, 489-511. 
MR 0703817[10] F. Szidarovszky, S. Yakowitz: 
Principles and Procedures of Numerical Analysis. Plenum Press, New York 1978. 
MR 0514705 | 
Zbl 0416.65001