Previous |  Up |  Next

Article

Title: 2-D polynomial equations (English)
Author: Šebek, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 19
Issue: 3
Year: 1983
Pages: 212-224
.
Category: math
.
MSC: 12E12
MSC: 13F20
MSC: 26C99
MSC: 93B25
MSC: 93B40
MSC: 93C35
idZBL: Zbl 0515.93036
idMR: MR716650
.
Date available: 2009-09-24T17:34:13Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124913
.
Reference: [1] E. Bertini: Zum Fundamentalsatz aus der Theorie der algebraischen Funktionen.Math. Ann. 34 (1889), 447-449. MR 1510584
Reference: [2] N. K. Bose: Multidimensional Systems: Theory and Applications.IEEE Press, New York 1979.
Reference: [3] R. Eising: 2-D Systems - An Algebraic Approach.Ph. D. Dissertation, Eindhoven University of Technology, Eindhoven 1979. Zbl 0426.93028, MR 0596404
Reference: [4] E. Emre: The polynomial equation $QQ_c + RP_c = \emptyset$ with application to dynamic feedback.SIAM J. Control Optim. 18 (1980), 6, 611-620. MR 0592921
Reference: [5] E. Emre, P. P. Khargonekar: Regulation of split linear systems over rings: coefficient-assignment and observers.IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. Zbl 0502.93019, MR 0673076
Reference: [6] T. Kailath: Linear Systems.Prentice-Hall, Englewood Cliffs 1980. Zbl 0454.93001, MR 0569473
Reference: [7] E. W. Kamen: A note on the representation of lumped-distributed networks, delay-differential systems and 2-D systems.IEEE Trans. Circuits and Systems CAS-27 (1980), 5, 430-432.
Reference: [8] E. W. Kamen: Linear systems with comensurate time delays: stability and stabilization independent of delay.IEEE Trans. Automat. Control AC-27 (1982), 2, 367-375. MR 0680101
Reference: [9] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach.Wiley, Chichester 1979. MR 0573447
Reference: [10] A. S. Morse: Ring models for delay-differential systems.Automatica 12 (1976), 5, 529-531. Zbl 0345.93023, MR 0437162
Reference: [11] M. Noether: Über einen Satz aus der Theorie der algebraischen Funktionen.Math. Ann. 6 (1873), 351-359.
Reference: [12] A. W. Olbrot, S. H. Żak: Controllability and observability problems for linear functional-differential systems.Foundations of Control Engineering 5 (1980), 2, 79 - 89. MR 0580335
Reference: [13] P. N. Paraskevopoulos: Feedback design techniques for linear multivariable 2-D systems.In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1980.
Reference: [14] : .Special issue on multidimensional systems. Proc. IEEE 65 (1977), 6. Zbl 1170.01341
Reference: [15] M. Šebek: 2-D Exact model matching.IEEE Trans. Automat. Control AC-28 (1983), 2, 215-217.
Reference: [16] L. N. Volgin: The Fundamentals of the Theory of Controlling Machines.(in Russian). Soviet Radio, Moscow 1962.
Reference: [17] B. L. van der Waerden: Modern Algebra.4th ed. (2 volumes). Frederic Ungar Publishing Co., New York 1964.
Reference: [18] W. A. Wolovich: Linear Multivariable Systems.Springer-Verlag, New York-Heidelberg-Berlin 1974. Zbl 0291.93002, MR 0359881
.

Files

Files Size Format View
Kybernetika_19-1983-3_3.pdf 773.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo