Previous |  Up |  Next

Article

Title: Large adaptive estimation in linear regression model. I. Consistency (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 28
Issue: 1
Year: 1992
Pages: 26-36
.
Category: math
.
MSC: 62F35
MSC: 62G07
MSC: 62G20
MSC: 62G35
MSC: 62J05
MSC: 93E10
idZBL: Zbl 0792.62033
idMR: MR1159872
.
Date available: 2009-09-24T18:29:36Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124973
.
Related article: http://dml.cz/handle/10338.dmlcz/125779
.
Reference: [1] R. Beran: An efficient and robust adaptive estimator of location.Ann. Statist. 6 (1978), 292 - 313. Zbl 0378.62051, MR 0518885
Reference: [2] P.J. Bickel: The 1980 Wald Memorial Lectures - On adaptive estimation.Ann. Statist. 10 (1982), 647-671.
Reference: [3] Y. Dodge: An introduction to statistical-data analysis $L_{1}$-norm based.In: Statistical Data Analysis Based on the $L_{1}$-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987. MR 0949217
Reference: [4] J. Jurečková: Regression quantiles and trimmed least square estimator under a general design.Kybernetika 20 (1984), 345 - 357. MR 0776325
Reference: [5] F. R. Hampel E. M. Ronchetti P.J. Rousseeuw, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions.J. Wiley, New York 1986. MR 0829458
Reference: [6] G. Heimann: Adaptive und robuste Schätzer in Regression Modellen.Ph. D. Diseration, Institut für Math. Stochastik, Universität Hamburg 1988.
Reference: [7] R. Koenker: .A lecture read on Charles University during his visit in Prague 1989. Zbl 0736.62060
Reference: [8] R. Koenker, G. Basset: Regression quantiles.Econometrica 46 (1978), 33 - 50. MR 0474644
Reference: [9] H. Koul, F. DeWet: Minimum distance estimation in a linear regression model.Ann. Statist. 11 (1983), 921 - 932. Zbl 0521.62023, MR 0707942
Reference: [10] R. A. Maronna, V.J. Yohai: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers.Z. Wahrsch. verw. Gebiete 58 (1981), 7 - 20. MR 0635268
Reference: [11] P.J. Rousseeuw, A.M. Leroy: Robust Regression and Outlier Detection.J. Wiley, New York 1987. Zbl 0711.62030, MR 0914792
Reference: [12] D. Ruppert, R.J. Carroll: Trimmed least squares estimation in linear model.J. Amer. Statist. Assoc. 75 (1980), 828 - 838. MR 0600964
Reference: [13] A. V. Skorokhod: Limit theorems for stochastic processes.Teor. Veroyatnost. i Primenen. 1 (1956), 261 - 290. Zbl 0074.33802
Reference: [14] C. Stein: Efficient nonparametric testing and estimation.In: Proc. Third Berkeley Symp. Math. Statist. Prob. 1 (1956), 187 - 196. Univ. of California Press, Berkeley, Calif. 1956. Zbl 0074.34801, MR 0084921
Reference: [15] C. Stone: Adaptive maximum likelihood estimators of a location parameter.Ann. Statist. 3 (1975), 267 - 284. Zbl 0303.62026, MR 0362669
Reference: [16] J. Á. Víšek: What is adaptivity of regression analysis intended for?.Transactions of ROBUST'90, JČMF, Prague 1990, pp. 160 - 181.
Reference: [17] J. Á. Víšek: Adaptive Estimation in Linear Regression Model.Research Report No. 1642, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.
Reference: [18] J. Á. Víšek: Adaptive Maximum-likelihood-like Estimation in Linear Model.Research Report No. 1654, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.
Reference: [19] J. Á. Víšek: Adaptive estimation in linear regression model and test of symmetry of residuals.To appear in the Proceedings of the Second International Workshop on Model-Oriented Data Analysis, Springer-Verlag, Wien.
.

Files

Files Size Format View
Kybernetika_28-1992-1_2.pdf 674.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo