| Title: | Normal forms in the typed $\lambda$-calculus with tuple types (English) | 
| Author: | Zlatuška, Jiří | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 21 | 
| Issue: | 5 | 
| Year: | 1985 | 
| Pages: | 366-381 | 
| . | 
| Category: | math | 
| . | 
| MSC: | 03B40 | 
| idZBL: | Zbl 0594.03005 | 
| idMR: | MR818889 | 
| . | 
| Date available: | 2009-09-24T17:49:33Z | 
| Last updated: | 2012-06-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/124994 | 
| . | 
| Reference: | [1] H. P. Barendregt: The Lambda Calculus. Its syntax and semantics.(Studies in Logic and the Foundations of Mathematics 103.), North-Holland, Amsterdam 1981. Zbl 0467.03010, MR 0622912 | 
| Reference: | [2] A. Church: A formulation of the simple theory of types.J. Symb. Logic 5 (1948), 1, 56-68. MR 0001931 | 
| Reference: | [3] A. Church: The Calculi of $\lambda$-conversion.(Annals of Mathematics Studies No. 6.), Princeton University Press, Princeton 1941 (1951). Zbl 0026.24205, MR 0005274 | 
| Reference: | [4] R. O. Gandy: An early proof of normalization by A. M. Turing.In: To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism (J. R. Hindley, J. P. Seldin, eds.), Academic Press, London 1980, pp. 453 - 456. MR 0592814 | 
| Reference: | [5] R. O. Gandy: Proofs of strong normalization.In: [4], pp. 457-477. MR 0592815 | 
| Reference: | [6] M. H. A. Newman: On theories with a combinatorial definition of "equivalence".Ann. of Math. (2), 43 (1942), 223-243. Zbl 0060.12501, MR 0007372 | 
| Reference: | [7] D. S. Scott: Lectures on a Mathematical Theory of Computation.Oxford University Computing Laboratory, Technical Monograph PRG-19, 1981. MR 0696963 | 
| Reference: | [8] D. S. Scott: Relating theories of the $\lambda$-calculus.In: [4], pp. 403 - 450. MR 0592813 | 
| Reference: | [9] A.  S. Troelstra (ed.): Metamathematical Investigations of Intuitionistic Arithmetic and Analysis.(Lecture Notes in Mathematics 344). Springer-Verlag, Berlin 1973. MR 0325352 | 
| Reference: | [10] J. Zlatuška: HIT data model. Data bases from the functional point of view.In: Proc. 11th VLDB (A. Pirotte, Y. Vassiliou, eds.), Stockholm 1985, pp. 470-477. | 
| . |