Previous |  Up |  Next

Article

Title: Bayesian analysis of the model of hidden periodicities (English)
Author: Anděl, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 1
Year: 1995
Pages: 1-16
.
Category: math
.
MSC: 62F15
MSC: 62M10
MSC: 62M15
idZBL: Zbl 0858.62081
idMR: MR1324657
.
Date available: 2009-09-24T18:53:04Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125186
.
Reference: [1] H. Z. An Z. G. Chen, E. J. Hannan: The maximum of the periodogram.J. Multivariate Anal. 13 (1983), 383-400. Zbl 0517.62094, MR 0716931
Reference: [2] J. Anděl: Statistische Analyse von Zeitreihen.Akademie-Verlag, Berlin 1984. MR 0762087
Reference: [3] E. Bølviken: New tests of significance in periodogram analysis.Scand. J. Statist. 10 (1983), 1-9. MR 0711329
Reference: [4] D. R. Brillinger: Fitting cosines: some procedures and some physical examples.In: Applied Probability, Stochastic Processes and Sampling Theory (MacNeill and G. J. Umphrey, eds.), pp. 75-100, Reidel, Dordrecht 1987.
Reference: [5] Z. G. Chen: Consistent estimates for hidden frequencies in a linear process.Adv. in Appl. Probab. 20 (1988), 295-314. Zbl 0661.62094, MR 0938147
Reference: [6] S. T. Chiu: Detecting periodic components in a white Gaussian time series.J. Roy. Statist. Soc. Ser. B 51 (1989), 249-259. Zbl 0669.62088, MR 1007457
Reference: [7] T. Cipra: Improvement of Fisher's test of periodicity.Apl. mat. 28 (1983), 186-193. Zbl 0528.62075
Reference: [8] T. Cipra: Investigation of periodicity for dependent observations.Apl. mat. 29 (1984), 134-142. Zbl 0541.62070, MR 0738498
Reference: [9] T. Cipra: Tests of periodicity with missing observations.Statistics 22 (1991), 233-243. Zbl 0809.62079, MR 1097376
Reference: [10] D. Damsleth, E. Spjøtvoll: Estimation of trigonometric components in time series.J. Amer. Statist. Assoc. 77 (1982), 381-387.
Reference: [11] F. N. David, M. G. Kendall: Tables of symmetric functions. Part I.Biometrika 36 (1949), 431-449. MR 0033788
Reference: [12] M. H. DeGroot: Optimal Statistical Decisions.McGraw-Hill, New York 1970. Zbl 0225.62006, MR 0356303
Reference: [13] R. A. Fisher: Test of significance in harmonic analysis.Proc. Roy. Soc. Ser. A 125 (1929), 54-59.
Reference: [14] E J. Hannan: Time Series Analysis.Wiley, New York 1960. Zbl 0095.13204
Reference: [15] E. J. Hannan: Testing for a jump in the spectral function.J. Roy. Statist. Soc. Ser. B 23 (1961), 394-404. Zbl 0109.12801, MR 0137271
Reference: [16] E. J. Hannan: Non-linear time series regression.J. Appl. Probab. 8 (1971), 767-780. Zbl 0227.62052, MR 0295498
Reference: [17] E. J. Hannan: The estimation of frequency.J. Appl. Probab. 10 (1973), 510-519. Zbl 0271.62122, MR 0370977
Reference: [18] E. J. Hannan, M. Mackisack: A law of the iterated logarithm for an estimate of frequency.Stochastic Process. Appl. 22 (1986), 103-109. Zbl 0613.60024, MR 0852386
Reference: [19] H. O. Hartley: Tests of significance in harmonic analysis.Biometrika 56 (1949), 194-201. Zbl 0033.19104, MR 0034008
Reference: [20] P. L. Hsu, H. Robbins: Complete convergence and the law of large numbers.Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31. Zbl 0030.20101, MR 0019852
Reference: [21] B. Kedem: Detection of periodicities by higher-order crossing.J. Time Ser. Anal. 8 (1987), 39-50. MR 0868016
Reference: [22] T. Lewis, N. R. J. Fieller: A recursive algorithm for null distribution for outliers: I. Gamma samples.Technometrics 21 (1979). 371-376. MR 0538441
Reference: [23] M. S. Mackisack, D. S. Poskitt: Autoregressive frequency estimation.Biometrika 76 (1989), 565-575. Zbl 0674.62057, MR 1040649
Reference: [24] I. B. MacNeill: Tests for periodic components in multiple time series.Biometrika 61 (1974), 57-70. Zbl 0275.62078, MR 0378317
Reference: [25] M. B. Priestley: The analysis of stationary processes with mixed spectra - I.J. Roy. Statist. Soc. Ser. B 24 (1962), 215-233. Zbl 0114.08301, MR 0140174
Reference: [26] M. B. Priestley: Analysis of stationary processes with mixed spectra - II.J. Roy. Statist. Soc. Ser. B 24 (1962), 511-529. MR 0152056
Reference: [27] B. G. Quinn: Estimating the number of terms in a sinusoidal regression.J. Time Ser. Anal. 10 (1989), 71-75. Zbl 0671.62087, MR 1001884
Reference: [28] B. G. Quinn, J. M. Fernandes: A fast efficient technique for the estimation of frequency.Biometrika 18 (1991), 489 - 497. Zbl 0737.62082, MR 1130917
Reference: [29] B. G. Quinn, P. J. Thomson: Estimating the frequency of a periodic function.Biometrika 18 (1991), 65-74. Zbl 0717.62088, MR 1118231
Reference: [30] A. Schuster: On the investigation of hidden periodicities with application to the supposed 26-day period of meteorological phenomena.Terr. Magn. Atmos. Electr. 3 (1898), 13-41.
Reference: [31] M. Shimshoni: On Fisher's test of significance in harmonic analysis.Geophys. J. R. Astronom. Soc. 23 (1971), 373-377.
Reference: [32] A. F. Siegel: Testing for periodicity in a time series.J. Amer. Statist. Assoc. 75 (1980), 345-348. Zbl 0462.62069
Reference: [33] W. F. Stout: Almost Sure Convergence.Academic Press, New York 1974. Zbl 0321.60022, MR 0455094
Reference: [34] A. T. Walden: Asymptotic percentage points for Siegel's test statistic for compound periodicities.Biometrika 19 (1992), 438-440.
Reference: [35] A. M. Walker: Some asymptotic results for the periodogram of a stationary time series.J. Austal. Math. Soc. 5 (1965), 107-128. Zbl 0128.38701, MR 0177457
Reference: [36] P. Whittle: The simultaneous estimation of a time-series harmonic components and covariance structure.Trabajos Estadfst. Investigacion Oper. 3 (1952), 43-57. Zbl 0049.37304, MR 0051487
Reference: [37] P. Whittle: The statistical analysis of a seiche record.J. of Marine Research (Sears Foundation) 13 (1954), 76-100. MR 0078600
Reference: [38] G. U. Yule: On a method of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers.Philos. Trans. Roy. Soc. London Ser. A 226 (1927), 267-298.
.

Files

Files Size Format View
Kybernetika_31-1995-1_1.pdf 2.113Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo