Previous |  Up |  Next

Article

Title: Non-commutative rings of fractions in algebraical approach to control theory (English)
Author: Ježek, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 1
Year: 1996
Pages: 81-94
.
Category: math
.
MSC: 16S90
MSC: 16S99
MSC: 16U20
MSC: 93A99
MSC: 93B25
MSC: 93C05
idZBL: Zbl 0874.16023
idMR: MR1380199
.
Date available: 2009-09-24T19:00:39Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125237
.
Reference: [1] N. Bourbaki: Théories spectrales.Hermann, Paris 1967. (Russian translation: Mir, Moscow 1972.) Zbl 0152.32603
Reference: [2] W. Greub: Linear Algebra.Springer Verlag, New York 1975. Zbl 0317.15002, MR 0369382
Reference: [3] N. Jacobson: Structure of Rings.American Mathematical Society, Providence, R.I. 1956. Zbl 0073.02002, MR 0081264
Reference: [4] J. Ježek: An algebraic approach to the synthesis of control for linear discrete meromorphic systems.Kybernetika 25 (1989), 2, 73-85. MR 0995951
Reference: [5] J. Ježek: Rings of skew polynomials for algebraical approach to control theory.Kybernetika 32 (1996), 1, 63-80. MR 1380198
Reference: [6] O. Øre: Linear equations in non-commutative fields.Ann. of Math. 32 (1931), 463-477. MR 1503010
Reference: [7] L. Pernebo: An algebraical theory for the design of controllers for linear multivariable systems, parts I, II.IEEE Trans. Automat. Control AC-26 (1981), 1, 171-194. MR 0609258
Reference: [8] H. W. Raudenbush, Jr.: Differential fields and ideals of differential forms.Ann. of Math. 34 (1933), 509-517. Zbl 0007.15103, MR 1503120
Reference: [9] R. Y. Sharp: Steps in Commutative Algebra.Cambridge University Press, Cambridge 1990. Zbl 0703.13001, MR 1070568
Reference: [10] M. Vidyasagar: Control System Synthesis -- A Fractional Approach.MIT Press, Cambridge, MA 1987. MR 0787045
.

Files

Files Size Format View
Kybernetika_32-1996-1_5.pdf 863.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo