Previous |  Up |  Next

Article

References:
[1] L. P. Belluce: Semisimple and complete MV-algebras (to appear). MR 1345638
[2] L.P. Belluce: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Can. J. Math. 6 (1986), 1356-1379. MR 0873417 | Zbl 0625.03009
[3] L. P. Belluce A. Di Nola, S. Sessa: Triangular norms, MV-algebras and bold fuzzy se theory (to appear). MR 1109234
[4] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302 | Zbl 0084.00704
[5] C. C. Chang: A new proof of the completeness of Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80. MR 0122718
[6] J.M. Font J. A. Rodrigues, A. Torres: Wajsberg algebras. Stochastica 8 (1984), 1, 5-31. MR 0780136
[7] C.S. Hoo: MV-algebras, ideals and semisimplicity. Math. Japon 34 (1989), 4, 563-583. MR 1005257 | Zbl 0677.03041
[8] D. Mundici: Interpretation of AFC*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 1, 15-63. MR 0819173
[9] D. Mundici: Mapping Abelian 1-group with strong unit one-one into MV-algebras. J. Algebra 98 (1986), 76-81. MR 0825135
[10] D. Mundici: The C*-algebras of three-valued logic. In: Logic Colloquium 88 (Ferro, Bonotto, Valentin and Zanardo, eds.), pp. 61-77. MR 1015319
[11] D. Mundici: The derivative of truth in Lukasiewicz sentential calculus. Contemporary Math. 69 (1988), 209-227. MR 0933811 | Zbl 0648.03011
[12] A. Di Nola: Representation and reticulation by quontients of MV-algebras. Manuscript.
[13] V. Novák: On the syntactico-semantical completeness of first-order fuzzy logic. Kybernetika 26 (1990), 1, 47-66; 2, 134-154.
[14] J. Pavelka: On fuzzy logic I, II, III. Z. Math. Logik Grundlag. Math. 25 (1979), 42-52; 119-134; 447-464.
[15] H. Raisowa, R. Sikorski: The Mathematics of Metamathematics. PWN, Warszawa 1963.
[16] L. A. Zadeh: Fuzzy sets. Inform, and Control 8 (1965), 338-353. MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo