Previous |  Up |  Next

Article

Title: Optimal discrete approximation of continuous linear operators applicable to control problems (English)
Author: Tuzar, Antonín
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 21
Issue: 4
Year: 1985
Pages: 287-297
.
Category: math
.
MSC: 41A15
MSC: 65D07
MSC: 65D25
MSC: 65K10
MSC: 65L10
MSC: 93B40
MSC: 93C15
idZBL: Zbl 0591.65017
idMR: MR815616
.
Date available: 2009-09-24T17:48:28Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125455
.
Reference: [1] H. C. Baxвaнов: Численные методы.Hayкa, Mocквa 1973. Zbl 0268.70012
Reference: [2] Z. Beran: Optimalizace diskrétního popisu spojitých systémů v teorii regulace.Candidate of Sciences Thesis, ÚTIA ČSAV, Praha 1980.
Reference: [3] M. Golomb: Optimal approximating manifolds in $L_2$2-spaces.J. Math. Anal. Appl. 12 (1965), 505-512. MR 0206588
Reference: [4] M. Golomb, and H. Weinberger: Optimal approximation and erros bounds.In: On Numerical Approximation (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison 1959, pp. 117-190. MR 0121970
Reference: [5] A. S. B. Holland, B. N. Sahnery: The General Problem of Approximation and Spline Functions.Krieger Publishing Co., Huntington, N. Y. 1979. MR 0547353
Reference: [6] T. A. Kilgore: A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm.J. Approx. Theory 24 (1978), 273-288. Zbl 0428.41023, MR 0523977
Reference: [7] P. J. Laurent: Approximation et optimisation.Hermann, Paris 1972. Zbl 0238.90058, MR 0467080
Reference: [8] T. Lyche, L. L. Schumaker: Local spline approximation methods.J. Approx. Theory 15 (1975), 294-325. Zbl 0315.41011, MR 0397249
Reference: [9] G. Meinardus: Approximation der Funktionen,Theorie und numerische Methoden.Springer-Verlag, Berlin-Gottingen -Heidelberg-New York 1964. MR 0176272
Reference: [10] M. J. D. Powell: Approximation Theory and Methods.Cambridge University Press, Cambridge 1981. Zbl 0453.41001, MR 0604014
Reference: [11] A. Sard: Best approximate integration formulae; best approximation formulae.Amer. J. Math. 71 (1949), 80-91. MR 0029283
Reference: [12] A. Sard: Optimal approximation.J. Funct. Anal. 1, 2 (1967), 222-244. Zbl 0158.13601, MR 0219967
Reference: [13] I. J. Schoenberg: Spline interpolation and best quadrature formulae.Bull. Amer. Math. Soc. 70 (1964), 143-148. Zbl 0136.36202, MR 0157157
Reference: [14] C. Л. Coбoлeв И. Бaбyшкa: Оптимизация численных методов.Aplikace matematiky 10 (1965), 2, 96-129. MR 0191072
Reference: [15] C. Л. Coбoлeв: Введение в теорию кубатурных формул.Hayкa, Mocквa 1974.
Reference: [16] J. Stoer, R. Bulirsch: Introduction to Numerical Analysis.Springer-Verlag, Berlin-Heidelberg-New York 1980. Zbl 0553.65004, MR 0557543
Reference: [17] A. Tuzar: Optimal Approximation of Linear Functionals in Hilbert Space with Applications to Numerical Methods.Research Report No. 988, ÚTIA ČSAV, 1979.
Reference: [18] A. Tuzar, Z. Beran: Optimization of the discrete description for continuous systems.Problems Control Inform. Theory 10 (1981), 2, 83 - 94. Zbl 0461.41010, MR 0618444
Reference: [19] J. F. Traub, H. Wozniakowski: A General Theory of Optimal Algorithms.Academic Press, New York 1980. Zbl 0441.68046, MR 0584446
Reference: [20] R. Varga: Functional Analysis and Approximation Theory in Numerical Analysis.Society for Industrial and Applied Mathematics, Philadelphia, Pensylvania 1971. Zbl 0226.65064, MR 0310504
.

Files

Files Size Format View
Kybernetika_21-1985-4_5.pdf 797.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo