Previous |  Up |  Next

Article

References:
[1] J. Anděl: Mathematical Statistics. (in Czech). SNTL - ALFA, Praha-Bratislava 1978.
[2] T. W. Anderson: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 (1955), 170- 176. MR 0069229 | Zbl 0066.37402
[3] R. A. Fisher: On the mathematical foundations of theoretical statistics. Reprinted in: Contributions to Mathematical Statistics (by R. A. Fisher). J. Wiley, New York 1950.
[4] W. Fuller: Introduction to the Statistical Time Series. J. Wiley, New York 1976. MR 0448509
[5] F. R. Hampel: The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 (1974), 383-393. MR 0362657 | Zbl 0305.62031
[6] P. I. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101. MR 0161415 | Zbl 0136.39805
[7] J. L. Kelley: General Topology. Van Nostrand, Princeton 1957. MR 0070144
[8] L. Le Cam: On the asymptotic theory of estimation and testing hypotheses. In: Proc. 3rd Berkeley Symp. Math. Statist. Prob. Vol. 1 (1956), 129-156. MR 0084918
[9] A. Perez: Notions generalisées d'incertitude, d'entropie et d'information du point de vue de la théorie des martingales. In: Trans. 1st Prague Conf. on Inform. Theory, etc. Publ. House Czechosl. Acad. Sci., Prague 1957.
[10] J. Pfanzagl: On the measurability and consistency of minimum contrast estimators. Metrika 14 (1969), 249-272.
[11] J. Pfanzagl: The second order optimaiity of tests and estimators for minimum contrast functional. Probab. and Math. Statist. 2 (1981), 55 - 70. MR 0633494
[12] A. Rényi: Theory of probability. (in Czech). Academia, Prague 1972. MR 0350789
[13] I. Vajda: Motivation, existence and equivariance of D-estimators. Kybernetika 20 (1984), 189-208. MR 0763646 | Zbl 0558.62026
[14] I. Vajda: Robust estimation in discrete and continuous families by means of a minimum chi-square method. Problems Control Inform. Theory 15 (1986), No. 2. MR 0851170 | Zbl 0609.62053
Partner of
EuDML logo