Previous |  Up |  Next

Article

References:
[1] S. E. Miller: Integrated optics: an introduction. Bell Syst. Tech. J. 48 (1969), 2059 - 2069. [2] R. V. Schmidt and I. P. Kaminow: Metal-diffused optical waveguides in $LiNb_{3}$. Appl. Phys. Lett. 25 (1974), 458- 460.
[3] J. L. Jackel C. E. Rice, J. J. Veselka: Proton exchange for high-index waveguides in $LiNb_{3}$. Appl. Phys. Lett. 41 (1982), 607 - 608.
14] W. E. Martin: A new waveguide switch/modulator. Appl. Phys. Lett. 26 (1975), 562 - 564.
[5] M. Papuchon, al.: Electrically switched optical directional coupler: COBRA. Appl. Phys. Lett. 27 (1975), 289-291.
[6] H. Kogelnik, R. V. Schmidt: Switched directional couplers with alternating $\Delta\beta$. IEEE J. Quant. Electron. QE-12 (1976), 396-402.
[7] A. Neyer: Electrooptic X-switch using single-mode $Ti:LiNb_{3}$ channel waveguides. Electron. Lett. 79(1983), 553-554.
[8] M. Papuchon A. M. Roy, D. B. Ostrowsky: Electrically active optical bifurcation: BOA. Appl. Phys. Lett. 31 (1977), 266-267.
[9] L. Thylén A. Djupsjöbacka M. Janson, W. Döldinen: Integrated optic device for high speed databusses. Electron. Lett. 21 (1985), 491 - 493.
[10] W. A. Stallard A. R. Beaumont, R. C. Booth: Integrated optic devices for coherent transmission. J. Lightwave Technol. LT-4 (1986), 852-857.
[11] P. Granestrand, al: Strictly nonblocking $8 \times 8$ integrated optical switch matrix. Electron. Lett. 22 (1986), 816-818.
[12] A. Neyer W. Mevenkamp, B. Kretzschamnn: Nonblocking $4 \times 4$ switch array with 16 switches in $Ti:LiNb_{3}$. Proc. IGWO, 1986, pap. WAA2.
[13] J. E. Watson M. Milbrodt, T. C Rice: A polarization independent $1 \times 16$ guided wave optical switch integrated on lithium niobate. J. Lightwave Technol. LT-4(1986), 1717- 1721.
[14] H. F. Taylor: Application of guided wave optics in signal processing and sensing. Proc. IEEE 75 (1987), 1524-1535.
[15] J. Čtyroký M. Hofman J. Janta, J. Schröfel: 3-D analysis of $LiNb_{3}$:Ti channel waveguides and directional couplers. IEEE J. Quantum Electron. QE-20 (1984), 4C0 -409.
[16] P. V. Schmidt: Integrated optics switches and modulators. In: Integrated Optics (S. Martellu- cci and A. N. Chichester, eds.), Plenum Press, New York 1983, pp. 181 - 210.
[17] J. Čtyroký: Voltage-length product of X and Z-cut $Ti:LiNb_{3}$ directional coupler and BOA switches: a comparison. J. Opt. Commun. 4 (1986), 139-143.
[18] T. K. Findakly, F. J. Leonberger: On the crosstalk of reversed $\Delta\beta$ directional coupler switches. J. Lightwave Technol. 6 (1988), 36 - 40.
[19] J. Čtyroký: Guided-wave electro-optic X-type switches: symmetry, switching characteristics and cross-talk. J. Modern Optics 35 (1988), 1007-1015.
[20] K. Goel, W. S. C Chang: Effect of asymetry on extinction coefficient of crossing channel $LiNb_{3}$ waveguide switches. Proc. SPIE 835: Integrated optical circuit engineering V, August 17-20, 1987, pp. 118-125.
[21] P. Granestrand L. Thylen, B. Stolz: Polarization independent $LiNb_{3}$ switch with reduced fabrication tolerances employing $\Delta\beta$ and x modulation. Tech. Digest. Integrated and guided wave optics, Top. Meeting, March 28-30, 1988. Santa Fé, pp. 244 - 247.
[22] R. C Alferness: Polarization-independent optical directional coupler switch using the weighted coupling. Appl. Phys. Lett. 35 (1979), 748-750.
[23] M. Izutsu Y. Yamane, T. Sueta: Broad-band travelling-wave modulator using a $LiNb_{3}$ optical waveguide. IEEE J. Quantum Electron. QE-13 (1977), 287-290.
[24] R. A. Becker: Travelling-wave electrooptic modulator with maximum bandwidth-length product. Appl. Phys. Lett. 45 (1984), 1168-1170.
[25] L. Thylén, A. Djupsjöbacka: Bandpass response travelling-wave modulator with a transit-time difference compensation schema. J. Lightwave Technol. LT-3 (1985), 47-51.
[26] K. Miura M. Minakata, S. Kawakami: Perfect velocity matching of a travelling-wave integrated-optic modulator with high efficiency. CLEO '88, April 1988, pp. 288-289.
[27] J. L. Jackel V. Ramaswamy, S. P. Lyman: Elimination of out-diffused surface guiding in Ti-diffused $LiNb_{3}$. Appl. Phys. Lett, is (1981), 509-511.
[28] A. Rasch M. Rottschalk, W. Karthe: Suppression of out-diffusion in $Ti:LiNb_{3}$. J. Opt. Commun. 6 (1985), 14-17.
[29] J. Neyer, T. Pohlmann: Fabrication of low-loss titanium-diffused $LiNb_{3}$ waveguides using a closed platinum crucible. Electron. Lett. 23 (1987), 1187-1188.
[30] M. Minakata K. Kumagai, S. Kawakami: Lattice constant changes and electro-optic effects in proton-exchanged $ LiNb_{3}$ optical waveguides. Appl. Phys. Lett. 49 (1986), 992-994.
[31] T. Suhara S. Fujiwara, H. Nishihara: Proton-exchanged Fresnel lenses in $Ti:LiNb_{3}$ waveguides. Appl. Opt. 25 (1986), 3379 - 3383.
[32] J. J. Veselka, G. A. Bogert: Low-loss TM-pass polarizer fabricated by proton exchange for Z-cut $Ti:LiNb_{3}$ waveguides. Electron. Lett. 23 (1987), 29-31.
[33] M. Rottschalk A. Rasch, W. Karthe: Electrooptic behaviour of proton-exchange $LiNb_{3}$ optical waveguides. J. Opt. Commun. 9 (1988), 19 - 23.
[34] P. C Suchoski M. M. Abu el leil T. K. Findakly, F. J. Leonberger: In: Integrated and Guided-Wave Optics Topical Meeting IGWO-88, Santa Fe 1988, p. 88.
[35] A. M. Glass: The photorefractive effect. Optical Engng. 17 (1978), 470-480.
[36] R. A. Becker, R. C Williamson: Photorefractive effects in $LiNb_{3}$ channel waveguides: Model and experimental verification. Appl. Phys. Lett. 47 (1985), 1024-1026.
[37] A. R. Beaumont, C G. Atkins, R. C Booth: Optically induced drift effects in lithium niobáte electro-optic waveguide devices operating at a wavelength of 1-51 $\mu m$. Electron. Lett. 22(1986), 1260-1261.
[38] C T. Müller, E. Garmire: Photorefractive effect in $LiNb_{3}$ directional couplers. Appl. Opt. 23 (1984), 4348-4351.
[39] G. T. Harvey G. Astfalk A. Y. Feldblum, B. Kassahun: The photorefractive effect in titanium indiffused lithium niobáte optical directional couplers at 1-3 $\mu m$. IEEE J. Quantum Electr. QE-22 (1986), 939 - 946.
[40] R. L. Holman J. Busch M. Parmanter, P. J. Cressman: Lithium Niobáte waveguides and their succeptibility to optical damage. Ferroelectrics 50 (1983), 171-177.
[41] E. M. Zolotov P. G. Kazanskii, V. A. Chernykh: Fotoindutsirovanoe preobrazovanie polarizatsii v kanalnykh $Ti-LiNb_{3}$ volnovodakh. Pisma v Zh. Tekh. Fiz. 7 (1981), 924 - 926.
[42] R. V. Schmidt P. S. Gross, A. M. Glass: Optically induced crosstalk in $LiNb_{3}$ waveguide switches. J. Appl. Phys. 51 (1980), 90-93.
[43] C H. Bulmer W. K. Burns, S. C. Hiser: Pyroelectric effects in $LiNb_{3}$ channel-waveguide devices. Appl. Phys. Lett. 48 (1986), 1036-1038.
[44] S. Yamada, M. Minakata: DC drift phenomena in $LiNb_{3}$ optical waveguide devices. Jap. J. Appl. Phys. 20 (1981), 733-737.
[45] C M. Gee G. D. Thurmond H. Blauvelt, H. W. Yen: Minimizing dc drift in $LiNb_{3}$ waveguide devices. Appl. Phys. Lett. 47 (1985), 211 - 213.
[46] T. Fujiwara S. Sato H. Mori, Y. Fujii: Suppression of crosstalk drift in $Ti:LiNb_{3}$ waveguide switches. J. Lightwave Technol. LT-6 (1988), 909 - 915.
[47] A. Rasch: Untersuchungen an ausgewáhlten wellenleitenden $Ti:LiNb_{3}$-Strukturen fur einen integriert-optischen Mach-Zehnder-Interferometer-Modulator. Ph. D. Thesis, FS University, Jena 1988.
[48] J. Čtyroký J. Janta, J. Schröfel: Electrooptic guided-waveguide switch in $LiNb_{3}$ (in Czech). Slaboproudý obzor 48 (1987), 116-122.
[49] K. Komatsu S. Yamazaki M. Kando, Y. Ohta: Low-loss broad-band $LiNb_{3}$ guidedwave phase modulators using titanium magnesium double diffusion method. J. Lightwave Technol. LT-5 (1987), 1239-1245.
Partner of
EuDML logo