Previous |  Up |  Next

Article

Title: Motivation, existence and equivariance of $D$-estimators (English)
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 20
Issue: 3
Year: 1984
Pages: 189-208
.
Category: math
.
MSC: 62B10
MSC: 62F10
MSC: 62F12
idZBL: Zbl 0558.62026
idMR: MR763646
.
Date available: 2009-09-24T17:40:38Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125584
.
Reference: [1] J. Aczél: Lectures on Functional Equations and Their Applications.Academic Press, New York 1966. MR 0208210
Reference: [2] D. F. Andrews P. J. Bickel R. R. Hampel P. J. Huber W. H. Rogers, J. W. Tukey: Robust Estimates of Location.Princeton Univ. Press, Princeton, N. J. 1972.
Reference: [3] D. E. Boekee: The $D_f$-information of order s.In: Trans. 8th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1979, 55-68. MR 0557706
Reference: [4] D. D. Boos: Minimum distance estimators for location and goodness of fit.J. Amer. Statist. Assoc. 76 (1981), 663-670. Zbl 0475.62030, MR 0629752
Reference: [5] I. Csiszár: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten.Publ. Math. Inst. Hungar. Acad. Sci. Ser. AS (1963), 85-108. MR 0164374
Reference: [6] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations.Studia Sci. Math. Hungar. 2, (1967) 209-318. MR 0219345
Reference: [7] H. Cramér: Mathematical Methods of Statistics.Princeton Univ. Press, Princeton, N. J. 1946. MR 0016588
Reference: [8] P. I. Huber: Robust estimation of a location parameter.Ann. Math. Statist. 35 (1964), 73-101. Zbl 0136.39805, MR 0161415
Reference: [9] P. I. Huber: Robust statistics: a review.Ann. Math. Statist. 43 (1972), 1041-1067. Zbl 0254.62023, MR 0314180
Reference: [10] S. Kullback, R. A. Leibler: On information and sufficiency.Ann. Math. Statist. 22 (1951), 79-86. Zbl 0042.38403, MR 0039968
Reference: [11] L. Le Cam: On the information contained in additional observations.Ann. Statist. 2 (1974), 630-649. Zbl 0286.62004, MR 0436400
Reference: [12] R. Š. Lipcer, A. N. Širjaev: Statistics of Random Processes.(in Russian). Nauka, Moscow 1974. MR 0431365
Reference: [13] P. W. Millar: Robust estimation via minimum distance methods.Z. Wahrsch. verw. Gebiete 55 (1981), 73-89. Zbl 0461.62036, MR 0606007
Reference: [14] A. M. Mood F. A. Graybill, D. C. Boes: Introduction to the Theory of Statistics.McGraw-Hill, New York 1963.
Reference: [15] J. Neyman: Contributions to the theory of $\chi^2$-test.In: Proc. 1st Berkeley Symp. on Math. Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239-273.
Reference: [16] W. C. Parr, W. R. Schucany: Minimum distance and robust estimation.J. Amer. Statist. Assoc. 75 (1980), 616-624. Zbl 0481.62031, MR 0590691
Reference: [17] C. R. Rao: Asymptotic efficiency and limiting information.In: Proc. 4th Berkeley Symp. on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531-546. Zbl 0156.39802, MR 0133192
Reference: [18] C. R. Rao: Criteria of estimation in large samples.Sankhya 25 (1963), 189-206. Zbl 0268.62011, MR 0175225
Reference: [19] P. V. Rao, al.: Estimation of shift and center of symmetry based on Kolmogorov-Smirnov statistic.Ann. Statist. 3 (1975), 862-873. MR 0375609
Reference: [20] I. Vajda: Limit theorems for total variation of Cartesian product measures.Studia Sci. Math. Hungar. 6 (1971), 317-333. MR 0310950
Reference: [21] I. Vajda: On the f-divergence and singularity of probability measures.Period. Math. Hungar. 2 (1972), 223-234. Zbl 0248.62001, MR 0335163
Reference: [22] I. Vajda: $\chi^\alpha$-divergence and generalized Fisher information.In: Trans. 6th Prague Conf. on Inform. Theory, etc., Academia, Prague 1973, 873 - 886. Zbl 0297.62003, MR 0356302
Reference: [23] I. Vajda: Theory of Information and Statistical Decision.(in Slovak), Alfa, Bratislava 1981.
Reference: [24] I. Vajda: A new general approach to minimum distance estimation.In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. Zbl 0552.62016, MR 0757729
Reference: [25] I. Vajda: Minimum divergence principle in statistical estimation.Statistics and Decisions (submitted). Zbl 0558.62004
Reference: [26] M. Vošvrda: On second order efficiency of minimum divergence estimators.In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. MR 0757940
Reference: [27] J. Wolfowitz: The minimum distance method.Ann. Math. Statist. 28 (1957), 75-88. Zbl 0086.35403, MR 0088126
Reference: [28] P. W. Zehna: Invariance of maximum likelihood estimation.Ann. Math. Statist. 37 (1966), 755. MR 0193707
.

Files

Files Size Format View
Kybernetika_20-1984-3_2.pdf 999.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo