Previous |  Up |  Next

Article

Title: Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity (English)
Author: Vakilzadeh, I.
Author: Keshavarz, A. A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 18
Issue: 1
Year: 1982
Pages: 66-71
.
Category: math
.
MSC: 93B03
MSC: 93B05
MSC: 93C10
MSC: 93C15
idZBL: Zbl 0487.93030
.
Date available: 2009-09-24T17:26:14Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125585
.
Reference: [1] M. Athans P. L. Falb: Optimal Control.McGraw-Hill, New York 1966. MR 0204181
Reference: [2] I. Vakilzadeh: The general class of admissible input for an Nth-order relay-controlled system.Iranian J. Sci. and Technology I (1972), 4, 323-338.
Reference: [3] I. Vakilzadeh: Analysis of a relay-controlled plant with one negative real pole of order two.J. Franklin Inst. 300 (1975), 5 and 6, 329-334.
Reference: [4] I. Vakilzadeh: Bang-bang control of a second-order unstable system.Internat. J. Control 20 (1974), 1, 49-56. Zbl 0279.49026
Reference: [5] I. Vakilzadeh: Bang-bang control of a plant with one positive and one negative real pole.J. Optim. Theory Appl. 24 (1978), 2, 315-324. MR 0528777
Reference: [6] A. A. Keshavarz: Bang-Bang Control of Some Nonlinear Systems.M. S. Thesis, Pahlavi University, Shiraz, Iran 1977.
Reference: [7] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear unstable plant with second-order nonlinearity.SIAM J. Control Optim. (submitted).
Reference: [8] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear stable plant with third-order nonlinearity.J. Optim. Theory Appl. (submitted).
Reference: [9] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear unstable plant with third-order nonlinearity.Internat. J. Control 34 (1981), 3, 457-463. MR 0631291
.

Files

Files Size Format View
Kybernetika_18-1982-1_6.pdf 326.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo