Previous |  Up |  Next

Article

Title: On non-normal asymptotic behavior of optimal solutions for stochastic programming problems and on related problems of mathematical statistics (English)
Author: Dupačová, Jitka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 1
Year: 1991
Pages: 38-52
.
Category: math
.
MSC: 62J05
MSC: 65C99
MSC: 90C15
MSC: 90C31
idZBL: Zbl 0733.90048
idMR: MR1099513
.
Date available: 2009-09-24T18:22:57Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125658
.
Reference: [1] R. E. Barlow J. Bartholomew J. N. Bremner, H. D. Brunk: Statistical Inference under Order Restrictions: The Theory and Application of Isotonic Regression.J. Wiley, New York 1972. MR 0326887
Reference: [2] K. Behnen, G. Neuhaus: Rank Tests with Estimated Scores and Their Application.(Teubner Skripten zur Mathematischen Stochastik.) Teubner, Stuttgart 1989. Zbl 0692.62041, MR 1003116
Reference: [3] H. Chernoff: On the distribution of the likelihood ratio.Ann. Math. Statist. 25 (1954), 573-578. Zbl 0056.37102, MR 0065087
Reference: [4] R. Clarke: Optimization and Nonsmooth Analysis.Wiley Interscience, New York 1983. Zbl 0582.49001, MR 0709590
Reference: [5] J. Dupačová: Stability in stochastic programming with recourse: Contaminated distributions.Math. Programming Study 27 (1986), 133-144. MR 0836754
Reference: [6] J. Dupačová: Stochastic programming with incomplete information: A survey of results on postoptimization and sensitivity analysis.Optimization 18 (1987), 507-532. MR 0909659
Reference: [7] J. Dupačová: Asymptotic properties of restricted Li -estimates of regression.In: Statistical Data Analysis Based on Li-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987, pp. 263 - 274. MR 0949231
Reference: [8] J. Dupačová: On nonnormal asymptotic behavior of optimal solutions of stochastic programming problems: The parametric case.In: Proc. 4th Prague Symp. Asymptotic Statistics (P. Mandl, M. Huskova, eds.), Charles University, Prague 1989, pp. 205-214. MR 1051439
Reference: [9] J. Dupačová: On statistical sensitivity analysis in stochastic programming.Ann. Oper. Res. 29 (1990). MR 1118898
Reference: [10] J. Dupačová, R. J., B. Wets: Asymptotic behaviour of statistical estimators and of optimal solutions of stochastic optimization problems.Ann. Statist. 16 (1988), 1517-1549. MR 0964937
Reference: [11] V. Fiacco, J. Kyparisis: Sensitivity analysis in nonlinear programming under second order assumptions.In: Systems and Optimization (A. Bagich, H. Th. Jongen, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1985, pp. 74-97. Zbl 0573.90089, MR 0878584
Reference: [12] J. Gauvin: A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming.Math. Programming 12 (1977), 136-138. Zbl 0354.90075, MR 0489903
Reference: [13] S. van de Geer: Asymptotic Normality of Minimum Li-norm Estimators in Linear Regression.Report MS-R8806 Centre for Mathematics and Computer Science, Amsterdam 1988.
Reference: [14] C. Gouriéroux A. Holly, A. Monfort: Likelihood ratio test, Wald test and KuhnTucker test in linear models with inequality constraints on the regression parameters.Econometrica 50 (1982), 63-80. MR 0640166
Reference: [15] P. J. Huber: Robust Statistics.J. Wiley, New York 1981. Zbl 0536.62025, MR 0606374
Reference: [16] K. Jittorntrum: Solution point differentability without strict complementarity in nonlinear programming.Math. Programming Study 21 (1984), 127-138. MR 0751247
Reference: [17] G. G. Judge, T. Takayama: Inequality restriction in regression analysis.J. Amer. Statist. Assoc. 67 (1966), 166-181. MR 0193713
Reference: [18] A. J. King: Asymptotic Behaviour of Solutions in Stochastic Optimization: Nonsmooth Analysis and the Derivation of Non-normal Limit Distribution.Ph. D. Dissertation, Univ. of Washington 1986.
Reference: [19] A. J. King, R. T. Rockafellar: Asymptotic theory for solutions in generalized M-estimation and stochastic programming.Preprint, 1989.
Reference: [20] M. Kojima: Strongly stable stationary solutions in nonlinear program.In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980. MR 0592631
Reference: [21] J. Kyparisis: Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers.Math. Oper. Res. (to appear). Zbl 0708.90086, MR 1051573
Reference: [22] Ch. K. Liew: Inequality constrained Least-squares estimation.J. Amer. Statist. Assoc. 71 (1976), 746-751. Zbl 0342.62037, MR 0428625
Reference: [23] T. Robertson F. T. Wright, R. L. Dykstra: Order Restricted Statistical Inference (Wiley Series in Probability and Statistics).J. Wiley, New York 1988. MR 0961262
Reference: [24] S. M. Robinson: Local structure of feasible sets in nonlinear programming. Part III: Stability and sensitivity.Math. Programming Study 30 (1986), 45-66. MR 0874131
Reference: [25] S. M. Robinson: Local epi-continuity and local optimization.Math. Programming 37 (1987), 208-222. Zbl 0623.90078, MR 0883021
Reference: [26] R. J. Serfting: Approximation Theorems in Mathematical Statistics.J. Wiley, New York 1980.
Reference: [27] A. Shapiro: Sensitivity analysis of nonlinear programs and differentiability properties of metric projections.SIAM J. Control Optim. 26 (1988), 628-645. Zbl 0647.90089, MR 0937676
Reference: [28] A. Shapiro: Towards a unified theory of inequality constrained testing in multivariate analysis.Internat. Statist. Rev. 56 (1988), 49-62. Zbl 0661.62042, MR 0963140
Reference: [29] A. Shapiro: Asymptotic properties of statistical estimators in stochastic programming.Ann. Statist. 77(1989), 841-858. Zbl 0688.62025, MR 0994271
Reference: [30] A. Shapiro: Gateaux, Frechet and Hadamard Directional Differentiability of Functional Solution in Stochastic Programming.Oper. Res. and Statistics Series No. 395, Technion, Haifa, Israel 1989.
Reference: [31] A. Shapiro: On differental stability in stochastic programming.Math. Programming A47 (1990), 107-115. MR 1054844
Reference: [32] H. White: Maximum likelihood estimation of misspecified models.Econometrica 50 (1982), 1-25. Zbl 0478.62088, MR 0640163
.

Files

Files Size Format View
Kybernetika_27-1991-1_4.pdf 764.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo