[1] P. Swerling: Modern estimation methods from the viewpoint of the method of least squares. IEEE Trans. on AC, AC-16, (1971) No. 6.
[2] P. A. V. B. Swammy: 
Statistical inference in random coefficient regression models. (Lecture notes in operations research and mathematical systems, vol. 55.) Springer-Verlag, Berlin-Heidelberg-New York 1971. 
MR 0329146[4] P. Kovanic: 
Generalized linear estimate of functions of random matrix arguments. Kybernetika 10 (1974), 4, 303-316. 
MR 0373722 | 
Zbl 0284.62038[5] C. R. Hallum T. O. Lewis T. L. Boullion: 
Estimation in the restricted general linear model with a positive semidefinite covariance matrix. Communications in statistics, 1 (2), (1973), 157-166. 
MR 0317469[6] T. O. Lewis P. L. Odell: 
A generalization of the Gauss-Markov theorem. J. Am. Stat. Assoc. 61 (1966), 1063-1066. 
MR 0203873[7] M. Blum: An extension of the minimum mean square prediction theory for sampled input signals. IRE Trans., IT-2 (1956), 176.
[8] P. Kovanic: 
Generalized discrete analogy of the Zadeh-Ragazzini problem. Automation and Telemechanics (In Russian) XXVII (1966), 2, 37. 
MR 0205741[9] I. D. Krutko: Statistical dynamics of impulse systems. (In Russian). Sovetskoe radio, Moskva 1963.
[10] A. F. Goodman: 
Extended iterative weighted least squares: Estimation of a linear model in the presence of complications. Naval research logistics quarterly 18 (1971), 2, 243 - 276. 
Zbl 0229.62031[11] E. D. Farmer: A method of prediction for nonstationary processes and its application to the problem of load estimation. Transactions of IFAC 1963.
[12] K. S. Banerjee R. N. Carr: A comment on ridge regression. Biased estimation for nonorthogonal problems. Technometrics 13 (1971), No. 4.